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Abstract. We apply three axioms adapted from decision theory to refinements of the Nash
equilibria of games with perfect recall that select connected closed subsets called solutions.
Undominated Strategies: No player uses a weakly dominated strategy in an equilibrium in

a solution.
Backward Induction: Each solution contains a quasi-perfect equilibrium and thus a sequen-

tial equilibrium in strategies that provide conditionally admissible optimal continuations
from information sets.
Small Worlds: A refinement is immune to embedding a game in a larger game with addi-

tional players provided the original players’ strategies and payoffs are preserved, i.e. solutions
of a game are the same as those induced by the solutions of any larger game in which it is
embedded.
For games with two players and generic payoffs, we prove that these axioms characterize

each solution as an essential component of equilibria in undominated strategies, and thus a
stable set as defined by Mertens (1989).
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1. Introduction

Nash’s [22, 23] definition of equilibrium is insufficient when applied to a game in exten-

sive form. Even for games with perfect information, some equilibria use weakly dominated

strategies and yield outcomes different from the outcome predicted by backward induction;

see [11, §4.2] for an example. The literature on refinements aims to sharpen Nash’s definition

to exclude such equilibria; recent surveys include [8, 12, 31].

Kohlberg and Mertens [14] suggest that a refinement should be characterized by axioms

adapted from decision theory. They also specify properties that axioms should imply. Sub-

sequently, Mertens [19, 20, 21] defines the set-valued refinement called stability and shows

that it has these and other properties, including the following.1

1. Admissibility and Perfection. All equilibria in a stable set are perfect (hence admis-

sible) so each player’s strategy in each equilibrium is undominated.

2. Backward Induction and Forward Induction. A stable set includes a proper equilib-

rium that induces a quasi-perfect (hence sequential) equilibrium in every extensive-

form game with perfect recall that has the same normal form. A subset of a stable

set survives iterative elimination of weakly dominated strategies and strategies that

are inferior replies at every equilibrium in the set.

3. Invariance, Small Worlds and Decomposition. The stable sets of a game are the

projections of the stable sets of any larger game in which it is embedded. The stable

sets of the product of two independent games are the products of their stable sets.

For games in extensive form with perfect recall, we propose three axioms that are versions

of these properties. We assume that for each game a refinement selects a nonempty collection

of nonempty connected closed subsets of equilibria, called solutions.2 The axioms are the

following:

A. Undominated Strategies: No player uses a weakly dominated strategy in any equi-

librium in a solution.

1Mertens considers the graph of equilibria over the space of perturbed games obtained by perturbing
players’ strategies toward mixed strategies, and then defines a connected closed set of equilibria as stable if
the projection from a neighborhood in this graph is an essential map, i.e. has nonzero degree. See Mertens [19]
for further topological aspects of the definition, and Govindan and Mertens [3] for an equivalent definition
in terms of players’ best-reply correspondences.

2Solutions are assumed to be sets because Kohlberg and Mertens [14, pp. 1015, 1019, 1029] show that
there need not exist a single equilibrium satisfying weaker properties than the axioms invoked here. The
technical requirement that a solution is connected excludes the trivial refinement that selects all equilibria. If
only a single (possibly unconnected) subset is selected then only the trivial refinement satisfies the conditions
invoked by Norde, Potters, Reijnierse, and Vermeulen [24]. Kreps and Wilson [16, Theorem 2] show that if
payoffs are generic then all equilibria in a connected set yield the same probability distribution over terminal
nodes, and thus the same paths of equilibrium play in the extensive form.
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B. Backward Induction: A solution contains a quasi-perfect equilibrium.

S. Small Worlds: A solution is immune to embedding the game within larger games

that preserve players’ strategies and payoffs.

In Axiom A we invoke only the implication of admissibility that no player uses a weakly

dominated strategy. Axiom A is equivalent to admissibility in two-player games. Axiom B

insists on inclusion of a quasi-perfect equilibrium because it induces a sequential equilibrium

in strategies that provide admissible optimal continuations from players’ information sets.3

Axiom S ensures that a refinement is not vulnerable to framing effects depending on how

the game is presented within wider contexts called metagames. A metagame can include

additional players and additional pure strategies, provided these additional features do not

alter optimal decisions in the original game. Our version of small worlds is stronger than

Mertens’ [21] version because our definition of embedding allows a more general class of

metagames.

We prove that these three axioms characterize refinements that select some or all of the

stable sets of a game in extensive form with perfect recall, two players, and generic payoffs.

Our characterization is cast in terms of the ‘enabling form’ of a game in which two pure

strategies of a player are considered equivalent if they exclude the same terminal nodes of

the game tree, and thus enable the same sets of terminal nodes to occur as outcomes of the

game. The enabling form is defined in Section 4.3 and explained further in Appendix A.

Our main theorem establishes that the axioms imply that each solution is an essential

component of admissible equilibria. For the enabling form of a game this is the defining

property of a stable set.4

When payoffs are generic, all equilibria in a component yield the same probability distribu-

tion over outcomes. Therefore, for economic modeling and econometric studies the axioms’

chief implication is that a predicted outcome distribution should result from an essential

component of the game’s admissible equilibria. A secondary implication is that a solution

must include all equilibria in the component. This is germane for predicting players’ be-

haviors only after deviations from equilibrium play, but it addresses the issue of whether

sequential rationality is a relevant decision-theoretic criterion after deviations (Reny [26]).

We show that each equilibrium in a solution is induced by a quasi-perfect equilibrium in a

3We intend that a revised version will weaken Axiom B to only require inclusion of a sequential equilibrium
for which each player’s strategy is conditionally admissible from each of his information sets.

4A component is a maximal closed connected set, and it is essential if it has the property described in
footnote 1. For the usual normal form of the game, a solution can be a subset of a component that maps to
a component of the enabling form of the game.
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solution of some metagame; therefore, it is sequentially rational when viewed in the wider

context of this metagame. See [7, Section 2.3] for an example.

Section 2 establishes notation for Section 3, which specifies Axioms A (undominated strate-

gies), B (backward induction), and S (small worlds), including a precise definition of embed-

ding a game in a larger game. Appendix B verifies that Nash equilibria satisfy this definition

of embedding. Section 4 establishes further notation and states a key technical property

proved in Appendix C. Section 5 states and proves the main theorem, Theorem 5.1. The

proof is constructive in that each equilibrium in a stable set is shown to be induced by

a quasi-perfect equilibrium in a solution of a particular metagame with perfect recall that

embeds the given game. Section 6 interprets this result and provides concluding remarks.

2. Notation

This section provides sufficient notation for statements of the axioms in Section 3. Section

4 introduces additional notation for the theorems in Section 5 and Appendix C.

A typical game in extensive form is denoted Γ. Its specification includes a set N of players,

a game tree with perfect recall for each player, and an assignment of players’ payoffs at each

terminal node of the tree. Let Hn be player n’s collection of information sets, and let An(h)

be his set of feasible actions at information set h ∈ Hn. The specification of the tree can

include a completely mixed strategy of Nature.

A player’s pure strategy chooses an action at each of his information sets. Denote n’s

simplex of mixed strategies by Σn and interpret its vertices as his set Sn of pure strategies.

The sets of profiles of players’ pure and mixed strategies are S =
∏

n Sn and Σ =
∏

n Σn.

The normal form of Γ assigns to each profile of players’ pure strategies the profile of their

expected payoffs; equivalently, it is the multilinear function G : Σ → RN that assigns to each

profile of their mixed strategies the profile of their expected payoffs.

A player’s behavioral strategy specifies a mixture over his actions at each of his information

sets. Let Bn be n’s set of behavioral strategies, and B =
∏

n Bn the set of profiles of players’

behavioral strategies. Each mixed strategy σn induces a behavioral strategy bn. Because the

game has perfect recall, for each behavioral profile there are profiles of mixed strategies that

induce it and yield the same distribution of outcomes (Kuhn [17]).

As defined by Nash [22, 23], an equilibrium is a profile of players’ strategies such that

each player’s strategy is an optimal reply to other players’ strategies. That is, if BRn(σ) ≡
arg maxσ′n∈Σn Gn(σ′n, σ−n) is player n’s best-reply correspondence, then σ ∈ Σ is an equi-

librium iff σn ∈ BRn(σ) for every player n. The analogous definition of equilibrium in

behavioral strategies is equivalent for games with perfect recall.
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A refinement is a correspondence that assigns to each game a nonempty collection of

nonempty connected closed subsets of its equilibria. Each selected subset is called a solution.

According to the above definitions, a mixed or behavioral strategy makes choices even

at information sets that its previous choices exclude from being reached. In Section 4 we

consider pure strategies to be equivalent if they make the same choices at information sets

they do not exclude. And, we further simplify mixed and behavioral strategies by considering

only their induced probability distributions on non-excluded terminal nodes. The definitions

of an equilibrium and a refinement have equivalent statements in terms of these strategy

spaces. Each equilibrium in a reduced strategy space corresponds to a set of equilibria as

defined above, and analogously for solutions selected by a refinement. The axioms in Section

3 are stated in terms of mixed and behavioral strategies as defined above. One reason for

this is that Axiom S implies invariance to redundant strategies, and thus justifies our later

use of equivalence classes of strategies.

3. The Axioms

3.1. Undominated Strategies. The first axiom requires that no player uses a weakly

dominated strategy. Say that a profile of players’ strategies is undominated if each player’s

strategy is undominated.

Axiom A (Undominated Strategies): Each equilibrium in a solution is undominated.

3.2. Backward Induction. We interpret sequential equilibrium as the generalization to

games with perfect recall of backward induction in games with perfect information, and

to be consistent with Axiom A we insist on conditionally admissible optimal continuations

from information sets. Here we obtain these properties from a quasi-perfect equilibrium,

which requires a consistency property of beliefs that is stronger than required by Kreps and

Wilson’s [16] definition of sequential equilibrium. Van Damme [30, p. 8] defines a quasi-

perfect equilibrium in terms of players’ behavioral strategies.

Definition 3.1 (Quasi-Perfect Equilibrium). A profile b ∈ B of behavioral strategies is a

quasi-perfect equilibrium if it is the limit of a sequence of profiles of completely mixed behav-

ioral strategies for which, for each player n, from each of his information sets, continuation

of his strategy bn is an optimal reply to every profile in the sequence.

That is, if BRn(·|h) is n’s best-reply correspondence in terms of behavioral strategies that

continue from his information set h ∈ Hn, and bn(h) is the continuation of his behavioral
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strategy bn from this information set, then the profile b ∈ B is quasi-perfect if

(∀ k) (∀n ∈ N, h ∈ Hn) bn(h) ∈ BRn(b̂k|h)

for some sequence b̂k ∈ B \ ∂B for which b̂k → b.

If the mixed-strategy profile σ ∈ Σ induces a behavioral profile b ∈ B that is a quasi-perfect

equilibrium then we say that σ too is quasi-perfect. Similarly, the justifying sequence b̂k can

be represented by a sequence σ̂k in Σ \ ∂Σ for which σ̂k → σ.

Van Damme shows that a quasi-perfect equilibrium induces a perfect equilibrium of the

normal form, and a sequential equilibrium of the extensive form in which all players’ beliefs

are induced by the same justifying sequence. Moreover, by construction a quasi-perfect

equilibrium provides for each player an admissible optimal continuation from each of his

information sets. It can be shown that if payoffs are generic then every sequential equilibrium

is quasi-perfect and extensive-form perfect.

The second axiom requires that some equilibrium in a solution is quasi-perfect.

Axiom B (Backward Induction): Each solution contains a quasi-perfect equilibrium.

If payoffs are generic then Axioms A and B imply that each solution lies in a component

of undominated equilibria, each of which yields the same distribution over outcomes as a

sequential equilibrium in the solution.

3.3. Small Worlds. The third axiom requires that a refinement is not affected by extra-

neous features of wider contexts in which a game is embedded, provided such contexts do

not alter players’ feasible strategies and payoffs. An embedding allows the presence of addi-

tional players whose actions might provide the original players with additional pure strategies

equivalent to mixed strategies in the original game, and thus redundant. For simplicity, to

define an embedding we use the normal form G : Σ → RN of the extensive-form game Γ.

An embedding is described by a ‘larger’ game G̃ : Σ̃ × Σo → RN∪ o in which game G is

‘embedded,’ subject to certain restrictions specified below. The larger game G̃ has outsiders

in a set o, in addition to insiders who are the players in N , and there can be additional

moves by Nature. An insider n can have additional pure strategies in Σ̃n that are not pure

strategies in Sn but are equivalent to mixed strategies in Σn. The basic requirement is that

an embedding should preserve the game among insiders, conditional on actions by outsiders.

These restrictions have a technical formulation. There should exist a multilinear map

f : Σ̃× Σo → Σ that is surjective and such that G̃n = Gn ◦ f for each insider n. Moreover,

to exclude an embedding from introducing correlation among insiders’ strategies, f should

factor into separate multilinear maps (fn)n∈N , where each component is a map fn : Σ̃n×Σo →
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Σn such that fn(·, σo) maps Σ̃n surjectively onto Σn for each profile σo ∈ Σo of outsiders’

strategies.

Admittedly, a statement of the axiom that uses this technical language could contain

unsuspected implications. However, after stating the formal definition, we provide in Propo-

sition 3.3 an equivalent formulation that is more detailed and more transparent, and that

verifies the requisite properties. Also, Proposition 3.4 applies a precise test of whether the

axiom is correctly stated, namely, a refinement that satisfies the axiom should be immune

to the same embeddings that equilibria are.

Definition 3.2 (Embedding). A game G̃ : Σ̃ × Σo → RN∪ o and a collection of multilinear

maps fn : Σ̃n × Σo → Σn, one for each player n ∈ N , embed a game G : Σ → RN if

(a) for each σo ∈ Σo, fn(·, σo) maps Σ̃n surjectively onto Σn, and

(b) G̃n = Gn ◦ f , where f = (fn)n∈N .

Condition (a) ensures that embedding has no net effect on an insider’s set of mixed strategies,

conditional on outsiders’ strategies, and condition (b) ensures that there is no net effect on

any insider’s payoffs.

Hereafter, if G̃ embeds G via maps f = (fn) then we say that (G̃, f) embeds G and that G̃

is a metagame for G. We omit description of f for metagames in extensive form that embed

a game in extensive or strategic form. An elaborate example of a metagame in extensive

form that embeds a game in extensive form is constructed in proving Theorem 5.1. Note

that the property that G̃ is a metagame for G does not depend on specifying payoffs for the

outsiders; in particular, it depends only on their extensive forms and the insiders’ payoffs in

the two games.

A multilinear map fn : Σ̃n × Σo → Σn is completely specified by its values at profiles

of pure strategies. Let f̂n be the restriction of fn to the set S̃n × So of profiles of pure

strategies of player n and the outsiders in o. The following Proposition, proved in Appendix

B, provides an alternative definition of embedding in terms of pure strategies.

Proposition 3.3. G̃ embeds G via a collection of multilinear maps f = (fn)n∈N if and only

if for each player n there exists T̃n ⊆ S̃n and a bijection πn : T̃n → Sn such that for each

(s̃, so) ∈ S̃ × So and t̃n ∈ T̃n:

(1) f̂n(t̃n, so) = πn(t̃n),

(2) G̃n(s̃, so) = Gn(f̂(s̃, so)), where f̂ = (f̂n)n∈N .
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Property (2) assures that players’ payoffs from pure strategies of G are preserved by the

metagame G̃. Hence property (1) assures that each pure strategy sn ∈ Sn is equivalent to

some pure strategy t̃n = π−1(sn) ∈ T̃n, independently of the outsiders’ profile so.

Pure strategies in S̃n \ T̃n are redundant because payoffs from profiles in
∏

n T̃n exactly

replicate payoffs from corresponding profiles in
∏

n Sn for the embedded game G. In par-

ticular, if f̂n(s̃n, so) = σn /∈ Sn then conditional on so the pure strategy s̃n is equivalent for

insiders to the mixed strategy σn ∈ Σn.

The next Proposition, proved in Appendix B, verifies that equilibria are not affected by

embedding in a metagame.

Proposition 3.4. If (G̃, f) embeds G then the equilibria of G are the f -images of the

equilibria of G̃.

A corollary of Proposition 3.4 is that embedding does not introduce correlation among

insiders’ strategies.

Using Definition 3.2 of embedding, the small worlds axiom is the following.

Axiom S (Small Worlds): If (G̃, f) embeds G then the f -images of the solutions that a

refinement selects for G̃ are the solutions selected for G.

In view of Proposition 3.4, this axiom is an instance of the general principle that a refinement

should inherit invariance properties of equilibria.

Two special cases of Axiom S are the following.

Invariance: Suppose Σo and o are singletons and insiders’ payoffs and strategies in Σ̃ differ

from Σ only by treating some mixed strategies in Σ as additional pure strategies in S̃. Then

Axiom S implies that solutions depend only on a game’s reduced normal form obtained by

deleting such redundant pure strategies.

Mertens’ Small Worlds Axiom [21]: Suppose Σ̃ = Σ. Then Axiom S implies that a

solution does not depend on the presence of outsiders, i.e. solutions of the original game are

the projections of the solutions of metagames obtained by adding dummy players.

3.4. Summary of the Axioms. We study refinements that are independent of embeddings

in metagames that, for each profile of outsiders’ strategies, preserve the strategies and payoffs

of the game among insiders. And, we require that each of their solutions is a closed connected

set of undominated equilibria, including one that is quasi-perfect. In particular, a solution

of a metagame must contain a quasi-perfect equilibrium whose image is in the corresponding

solution of the embedded game.
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4. Additional Notation and Properties

In the sequel we consider only a game Γ in extensive form with perfect recall, two players,

and generic payoffs. In this section we prepare for the statement and proof of the main

theorem in Section 5.

4.1. Payoffs. Let Z be the set of terminal nodes of the game tree. Players’ payoffs are given

by a point u in U = RN×Z , where un(z) is the payoff to player n ∈ N at terminal node z ∈ Z.

We assume that payoffs are generic in that there exists a lower dimensional subset U◦ of U

such that our results are true for all games in U \ U◦. The set U◦ includes the nongeneric

set described in [4]. Therefore, each game outside U◦ has finitely many equilibrium outcome

distributions, and in particular all equilibria in a component yield the same distribution

over outcomes. However, the proofs in Section 5 and Appendix C require some genericity

properties that are not necessarily implied by the construction in [4]. To avoid disrupting

the main exposition, we defer to Appendix D the description of the exact set of genericity

properties required for the proofs, and an explanation of why the resulting set U◦ of excluded

payoffs has lower dimension.

4.2. Notation for the Extensive Form. The set of players is N = {1, 2}, typically rep-

resented as a player n and the other player m 6= n. Let X be the set of nodes in the game

tree. Let Xn be the set of nodes where player n moves, partitioned into his information

sets h ∈ Hn. For a node x ∈ Xn we write h(x) for the unique information set h ∈ Hn that

contains x. For each n and h ∈ Hn, let An(h) be the set of actions available to player n at

h. Assume that actions at all information sets are labeled differently, and let An be the set

of all actions for player n.

Node x precedes another node y, written x ≺ y, if x is on the unique path from the root

of the tree to y. For a node x ∈ Xn and a ∈ An(h(x)) write (x, a) ≺ y if x ≺ y and the path

from the root of the tree to y requires player n to choose a at h(x). If (x, a) ≺ y and x and

y belong to n’s information sets h and h′, respectively, then every node in h′ follows some

node in h by the choice of a, so we write (h, a) ≺ h′.

The set of pure strategies of player n is the set Sn of functions sn : Hn → An such that

sn(h) ∈ An(h) for all h ∈ Hn. For each n, sn ∈ Sn and y ∈ X, let βn(y, sn) be the probability

that sn does not exclude y, i.e. βn(y, sn) = 1 if for each (x, a) ≺ y with x ∈ Xn, sn(h(x)) = a,

and otherwise βn(y, sn) = 0. By perfect recall, if y ∈ Xn then βn(y′, sn) = βn(y, sn) for all

y′ ∈ h(y) and we write βn(h(y), sn) for this probability. Likewise, for any node y we write

β0(y) for the probability that Nature does not exclude y. Then for a profile s ∈ S the

probability that node y is reached is β(y, s) ≡ β0(y)β1(y, s1)β2(y, s2).
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Recall that Σn is the set of mixed strategies of player n. For each node y the function

βn(y, ·) extends to a function over Σn via βn(y, σn) =
∑

sn∈Sn
βn(y, sn)σn(sn) for σn ∈ Σn.

Recall also that Bn is the set of behavioral strategies of player n. For each bn ∈ Bn, βn(y, bn)

is the product of bn’s probabilities of n’s actions on the path to y.

Similarly extend β to profiles of mixed or behavioral strategies. Given a mixed-strategy

profile σ ∈ Σ, the probability that outcome z results is β(z, σ) = β0(z)β1(z, σ1)β2(z, σ2).

4.3. Enabling Strategies. For each player n define ρn : Σn → [0, 1]Z by the formula

ρn(σn) = (βn(z, σn))z∈Z , and let ρ = (ρn)n∈N . Similarly, if bn ∈ Bn is the behavioral strategy

induced by σn then ρn(σn) = (βn(z, bn))z∈Z . Let Pn be the image of ρn, and P =
∏

n Pn

the image of ρ. Then Pn is a compact convex polyhedron, called the space of n’s enabling

strategies in [5]. Each vertex of Pn corresponds to an equivalence class of n’s pure strategies

that exclude the same outcomes.5

If σ ∈ Σ and p = ρ(σ) then the probability of outcome z is γz(p) = β0(z)p1(z)p2(z). Thus

the function γ : P → ∆(Z) summarizes the extensive form. The analog of the game Γ’s

normal form G : Σ → RN is the enabling form G : P → RN that assigns to each profile

of enabling strategies the profile of players’ expected payoffs, where Gn(p) =
∑

z γz(p)un(z).

Note that γ and G are multilinear functions. From players’ best-reply correspondences in

terms of enabling strategies one obtains the definition of equilibrium in enabling strategies.

To each equilibrium in enabling strategies there correspond families of outcome-equivalent

equilibria in behavioral and mixed strategies. Axioms A and S have direct analogs in terms

of enabling strategies, as shown in [11].

For games in extensive form with perfect recall, enabling strategies are minimal repre-

sentations. For example, using perfect recall, by working backward in the induced tree of

a player’s information sets, from his enabling strategy one can construct the corresponding

behavioral strategy at his information sets that his prior actions do not exclude. Because

Axiom S implies Invariance, it is immaterial whether solutions are characterized in terms of

mixed, behavioral, or enabling strategies. We use enabling strategies here because induced

distributions over outcomes are multilinear functions of enabling strategies, like they are for

mixed strategies but unlike the nonlinear dependence on behavioral strategies. Also, the

dimensions of the spaces of enabling and behavioral strategies are the same, which is im-

portant for the technical property established in Theorem 4.1 below. Using these features,

Section 5 derives the implications of the axioms in terms of enabling strategies.

5In [5], enabling strategies are defined in terms of terminal actions rather than terminal nodes. The
present definition is equivalent because a player’s probability of enabling a terminal action is the probability
of enabling each terminal node that follows it. The vertices of Pn are n’s pure strategies in the ‘pure reduced
normal form’ defined by Mailath, Samuelson, and Swinkels [18]. See Appendix A for illustrations.
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4.4. Stable Sets of Equilibria. Now let Σ̄∗ be a component of the equilibria of Γ in terms

of mixed strategies, and let Σ̄∗
n be the projection of Σ̄∗ in Σn.

By genericity, all equilibria in Σ̄∗ induce the same distribution over outcomes. Therefore,

for each node x, β(x, σ) is the same for all σ ∈ Σ̄∗; in particular, if x belongs to information

set h ∈ Hn and h is on an equilibrium path then βn(h, σn) is the same for every equilibrium

strategy σn of player n in Σ̄∗. We therefore denote these probabilities by β∗n(x) and β∗n(h).

Let H∗
n be the collection of information sets h ∈ Hn of player n such that β∗n(h) > 0 and let

A∗
n be the set of actions at information sets in H∗

n that are chosen with positive probability

by the equilibria in B̄∗, where B̄∗ is the set of profiles of behavioral strategies induced by

equilibria in Σ̄∗.

Let S0
n ⊂ Sn be the set of pure strategies s0

n with the property that, at each information

set h ∈ H∗
n that s0

n does not exclude, s0
n prescribes an action in A∗

n. Let S1
n = Sn \ S0

n, i.e.

each pure strategy sn in S1
n chooses a non-equilibrium action at some information set h ∈ H∗

n

that it does not exclude.

For i = 0, 1, let Σi
n be the set of mixed strategies whose support is contained in Si

n. Observe

that the support of n’s strategy in every equilibrium in Σ̄∗ is contained in S0
n and that every

strategy in S0
n is a best reply against every equilibrium in Σ̄∗. Thus Σ̄∗

n is contained in Σ0
n

and Σ̄∗ = Σ̄∗
1 × Σ̄∗

2.

If S1
n is empty for each n, then each equilibrium in B̄∗ is completely mixed; by genericity,

B̄∗ is a singleton and its equivalent mixed strategy is stable. The only interesting case,

therefore, is one where S1
n is nonempty for at least one of the players. In order to avoid

dealing with different cases, we assume that S1
n is nonempty for each n. (Along the way, we

will indicate how the proof changes when S1
n is empty for exactly one player.)

Let P 0
n be the image of Σ0

n under ρn. Let Z1
n ⊂ Z be the set of terminal nodes z such that

(h, a) ≺ z for some h ∈ H∗
n and a /∈ A∗

n. Let Z0
n = Zn \ Z1

n. Then P 0
n is the set of pn ∈ Pn

such that pn(z) = 0 for all z ∈ Z1
n and thus P 0

n is a face of Pn. However, the image P 1
n of Σ1

n

under ρn need not be a face of Pn. For i = 0, 1, let P i = P i
1 × P i

2 and define P = P 0 × P 1.

For each pn ∈ Pn, let ψZ1
n
(pn) be the projection of pn to RZ1

n
+ ; then ψZ1

n
(pn) = 0 iff

pn ∈ P 0
n . Fix a point p̄m in the interior of Pm and define ηn : Pn → R by η(pn) =∑

z∈Z1
n
p0(z)p̄m(z)pn(z), where p0 is Nature’s enabling strategy. Then η(pn) = 0 iff pn ∈ P 0

n .

Choose ε > 0 such that ηn(pn) > ε for all pn ∈ P 1
n . Let Hn be the hyperplane in RZ1

n with

normal (p0(z)p̄m(z))z∈Z1
n

and constant ε. Hn separates the origin from ψZ1
n
(P 1

n). Let Π1
n be

the intersection of Hn with ψZ1
n
(P 1

n). Then there is a function π̄1
n from Pn \ P 0

n to Π1
n that

maps each pn /∈ P 0
n to the point ε(ηn(pn))−1ψZ1

n
(pn).
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Now let Σ∗ be a component of the undominated equilibria of the game Γ that is contained

in Σ̄∗. Since Σ̄∗ = Σ̄∗
1× Σ̄∗

2, Σ∗ is expressible as a product Σ∗
1×Σ∗

2, where Σ∗
n is a component

of the intersection of Σ̄∗
n with the set of undominated strategies. For each n, let Q∗

n be the

image of Σ∗
n under ρn, and Q∗ the image of Σ∗ under ρ, i.e. represented in enabling strategies.

Hereafter we say that Q∗ is stable if Σ∗ is a stable set of equilibria.6

4.5. The Associated Pseudomanifold. Given Q∗, let Q be the set of (q∗, (p0, p1), π1) ∈
Q∗ × P× Π1 such that there exist r0, p̃0

n ∈ P 0
n , r1 ∈ P 1

n , and for each n scalars λ0
n, λ

1
n, µ1

n in

the interval (0, 1] such that, if

q0
n = λ0

np
0
n + (1− λ0

n)r0
n and q1

n = (1− λ1
n)p̃0

n + λ1
n(µ1

np
1
n + (1− µ1

n)r1
n) ,

then for each n:7

(i) π̄1
n(q1

n) = π1
n.

(ii) q0
n, and r0

n if λ0
n < 1, are lexicographic best replies against (q∗m, q0

m, q1
m).

(iii) If µ1
n < 1 then r1

n is a best reply against q∗n and lexicographically as good a reply

against (q∗m, q0
m, q1

m) as other strategies in P 1
n .

Let ψ : Q → P be the natural projection, i.e. ψ(q∗, (p0, p1), π1) = (p0, p1). Let ∂Q =

ψ−1(∂P). The following technical property is proved in Appendix C.

Theorem 4.1. (Q, ∂Q) is a pseudomanifold of the same dimension as (P, ∂P). Moreover,

the projection map ψ : (Q, ∂Q) → (P, ∂P) is essential iff Q∗ is stable.

In case S1
n is empty (and S1

m is not), then the set Π1
n is empty. We set P = P 0 × P 1

m.

Points in Q are of the form (q0, p0, π1
m) and we drop the optimality requirement (iii) for n.

5. Statement and Proof of the Theorem

We now state and prove the main theorem. We assume that a solution is represented in

terms of enabling strategies, i.e. Q∗ ⊂ P is a solution iff it is the image under ρ of a solution

Σ∗ ⊂ Σ.

Theorem 5.1. Axioms A, B, S imply that each solution is an essential component of the

game’s undominated equilibria.

6Alternatively, as noted by Mertens [21], one can apply the definition of stability directly to Q∗ as a
component of equilibria, represented in terms of enabling strategies, over the space of perturbations of
players’ enabling strategies.

7Lexicographically optimal replies are defined by Blume, Brandenburger, and Dekel [1] and Govindan and
Klumpp [2].
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Proof. Let Q∗ ⊂ P be a solution. Let deg(ψ) be the degree of the projection map ψ :

(Q, ∂P ) → (P, ∂P) defined in Section 4.5 above. Let q0,∗ be an arbitrary point in Q∗. For

each m, choose a point p0,∗
m in the interior of P 0

m against which q0,∗ is a best reply. Such a

choice is possible by genericity of payoffs: the interior of the projection of Σ̄∗
m belongs to

the interior of P 0
m and all strategies in P 1

n are inferior replies against every such point. Since

q0,∗
n belongs to Q∗

n, which consists only of undominated (hence admissible) strategies, there

exists a point pm in the interior of Pm against which q0,∗
n is a best reply. pm is equivalent

to a completely mixed strategy σm in Σm. Express σm as a convex combination of σ0
m and

σ1
m, where for i = 0, 1, σi

m belongs to the interior of Σi
m. Let p0

m and p1,∗
m be the enabling

strategies that are equivalent to σ0
m and σ1

m, respectively. Then p0
m and p1,∗

m are in the relative

interiors of P 0
m and P 1

m respectively, and pm is a convex combination of p0
m and p1,∗

m . It follows

that x∗ ≡ (q0,∗, (p0,∗, p1,∗), π1,∗) belongs to Q \ ∂Q, where for each n, π1,∗
n = π̄1

n(p1
n), and in

the definition of Q, q0
n is p0,∗

n and q1
n is p1

n.

For any neighborhood U(q0,∗) of q0,∗ we can choose a neighborhood U(x∗) of x∗ that is

homeomorphic to a simplex, is contained in Q \ ∂Q and such that the projection onto the

first factor is contained in the neighborhood U(q0,∗), i.e. if (q0, (p0, p1), π1) ∈ U(x∗) then

q0 ∈ U(q0,∗). For the proof we construct a metagame such that: (i) if deg(ψ) is zero then

there is no quasi-perfect equilibrium of the metagame projecting to an equilibrium in Q∗;

and (ii) if deg(ψ) is nonzero then all its quasi-perfect equilibria that project to points in

Q∗, project to points in U(q0,∗). Since U(q0,∗) is an arbitrary neighborhood of the arbitrary

point q0,∗ in Q∗, this proves the theorem.

5.1. Preliminaries. Fix some p̄ in the interior of P and define ι : ∂P→ ∂P as follows: ι(p)

is the unique point in the boundary of the form λp + (1 − λ)p̄ for λ < 0. Then ι has no

fixed point. Let g∂Q : ∂Q → P be the function ι ◦ ψ∂Q, where ψ∂Q is the restriction of ψ to

∂Q. Then g∂Q has no point of coincidence with ψ, i.e., for each x ∈ ∂Q, g∂Q(x) 6= ψ(x). Let

d be the dimension of P. If deg(ψ) = 0 then, since ι is a homeomorphism, δ∗i∗g∗∂Q(1) = 0

in Hδ(Q, ∂Q), where i : ∂Q → Q is the inclusion map, 1 is the generator of Hd−1(P) ≈ Z,

and δ∗ is the coboundary operator. By the Hopf Extension Theorem [29, Corollary 8.1.18],

g∂Q can be extended to a map g : Q → ∂P. Obviously g has no point of coincidence with

ψ. If deg(ψ) 6= 0 then construct a map g∂U(x∗) from ∂U(x∗) to ∂P of the same degree

deg(ψ) such that δ∗i∗g∗∂Q∪∂U(x∗)(1) = 0 in Hδ(Q\ (U(x∗)\∂U(x∗)), ∂Q∪∂U(x∗)), where now

i : (∂Q ∪ ∂U(x∗)) → Q \ (U(x∗) \ ∂U(x∗)) is the inclusion map and δ∗ is the coboundary

operator. Using again the Hopf Extension Theorem, there exists a map g∂U(x∗) such that

the two maps g∂Q and g∂U(x∗) can be extended to a map from Q \ (U(x∗) \ ∂U(x∗)) to P;
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furthermore, by mapping points in U(x∗) to P in a way that extends g∂U(X∗), we obtain a

map g : Q → P such that all its points of coincidence with ψ, of which there is at least one,

are contained in U(x∗) \ ∂U(x∗).

By construction there exists α > 0 such that for all x ∈ Q, ‖g(x)−ψ(x)‖ 6 α iff α 6= 0 and

x ∈ U(x∗). Choose a triangulation Ki
n of P i

n for each n and i = 0, 1 such that the diameter of

each simplex is no more than α/2. For each n there exists for each i a triangulation Li
n of P i

n

and a triangulation LΠ
n of Π1

n such that, letting L be the resulting multisimplicial subdivision

of P 0×P×Π1, g has a multisimplicial approximation g̃ [9, Appendix B] with the triangulation

of the range given by K =
∏

n,iKi
n. Observe that if for some x = (q0, p0, p1, π1) there exists a

multisimplex K that contains ψ(x) and g̃(x) then, since g̃ is a multisimplicial approximation

of g, that multisimplex is a face of one that contains g(x) and thus ‖g(x) − ψ(x)‖ 6 α;

in particular, if x also belongs to Q, then x ∈ U(x∗), and thus q0 ∈ U(q0,∗). As in [9,

Theorem B.2], now take a further polyhedral subdivision T of L and let γ be the convex

function generated by T , i.e. γ is piecewise linear and linear precisely on each full-dimensional

polyhedron of the subdivision.

Hereafter, unless explicitly stated, we represent players’ pure and mixed strategies in terms

of the induced enabling strategies; thus, pure strategies in Sn are represented as vertices of

Pn and mixed strategies are mixtures of these vertices.

5.2. A Game with Redundant Strategies. We first construct a game with redundant

pure strategies that is the basis for the metagame specified later. For each fixed p̂ = (p0, p1) ∈
P and δ ∈ (0, 1), consider the following game Γ(δ, p̂). Each player n chooses a strategy in the

following manner (and unaware of his opponent’s choices). Initially, player n provisionally

chooses a pure strategy s0
n ∈ S0

n, or he rejects all strategies in S0
n.

• If initially he chooses a strategy s0
n then at a subsequent second stage he can retain

s0
n or revise his choice. At this second stage the revisions available are ‘duplicate’

pure strategies in a set T 0
n(δ, p0

n), each of which is a mixed strategy of the form

tn(δ, p0
n) ≡ (1− δ)tn + δp0

n for some tn ∈ S0
n.

• If he rejects all strategies in S0
n then at a second stage he can choose among the

strategies in T 0
n(δ, p0

n) or reject them all.8 If he rejects them all then at a third

stage he chooses among the pure strategies in S1
n ∪ T 1

n(δ, p1
n), where each strategy in

T 1
n(δ, p1

n) is a duplicate of the form tn(δ, p1
n) ≡ (1− δ)tn + δp1

n for some tn ∈ S0
n.

8It would have sufficed, at this stage, to give player n the option of playing just the strategy p0
n instead

of all the strategies in T 0
n(δ, p0

n), which we do only for economy in notation.



16 SRIHARI GOVINDAN AND ROBERT WILSON

In Γ(δ, p̂) the set of n’s pure strategies is S̃n(δ, p̂n) ≡ Sn ∪ T 0
n(δ, p0

n) ∪ T 1
n(δ, p1

n). Thus, game

Γ(δ, p̂) has the same reduced normal form as Γ.

5.3. Extensive Form of the Metagames. Now we specify a family of similar metagames

Γ̃δ, one for each δ > 0.

Before the insiders play, thirteen outsiders, denoted players o0 and oi
n,j for n = 1, 2, i = 0, 1

and j = 1, 2, 3, move simultaneously. Outsider o0 chooses a full-dimensional polyhedron T

of the polyhedral complex T . Outsider oi
n,j, for n = 1, 2, j = 1, 3 and i = 0, 1, chooses a

point in the vertex set V i
n of Ki

n. Outsider o0
n,2 chooses a point in a finite subset S0,δ

n of P 0
n

chosen such that every point in P 0
n is within δ of some point in S0,δ

n ; outsider o1
n,2 chooses a

point in a finite subset S1,δ
n of Π1

n such that every point in Π1
n is within δ of some point in

S1,δ
n .

For outsider oi
n,1, each pure strategy vi

n corresponds to a point in P i
n denoted pi

n(vi
n).

Therefore, each mixed strategy σi
n,1 corresponds to a point in P i

n, denoted pi
n(σi

n,1), which is

obtained by taking the appropriate average of the points induced by the pure strategies in

the support of σi
n,1. Likewise a mixed strategy σ0

n,2 of o0
n,2 corresponds to a point q0

n(σ0
n,2) in

P 0
n , and a mixed strategy σ1

n,2 of o1
n,2 corresponds to a point π1

n(σ1
n,2) in Π1

n.

A mixed-strategy profile σ̃o for the outsiders induces a point (q0(σ̃o), (p
0(σ̃o), p

1(σ̃o)), π
1(σ̃o))

in P 0×P×Π1, where for each n and i, pi
n(σ̃o) depends on the choice by oi

n,1, and q0
n(σ̃o) and

π̄1
n(σ̃o) depend on the choices by o0

n,2 and o1
n,2 respectively.

After each pure-strategy profile s̃o of the outsiders there follows a copy of the game

Γ(δ, p̂(s̃o)). That is, if in the profile s̃o outsiders oi
n,1 choose points vi

n, then there follows

a copy of Γ(δ, p̂) after these choices, where for each n, p̂n = (p0
n(v0

n), p1
n(v1

n)). However, the

information sets in Γ̃δ are such that the insiders play without knowing which copy of Γ(δ, p̂)

they are playing. The sets of duplicate strategies available are therefore now denoted by

T 0
n(δ) and T 1

n(δ), omitting the reference to p0
n and p1

n, since the insiders are uninformed

about which mixtures were implemented by outsiders. Put differently, for i = 0, 1 and

tn ∈ S0
n, the exact duplicate strategy implemented by choosing tin(δ) ∈ T i

n(δ) depends on the

choice by the outsider oi
n,1 that insiders do not observe. Thus in the metagame Γ̃δ, player

n’s set of pure strategies, up to duplication of pure strategies, is S̃n(δ) ≡ Sn ∪T 0
n(δ)∪T 1

n(δ).

That the metagame Γ̃δ embeds Γ follows from Proposition 3.3. The strategies in Sn are

available as pure strategies in S̃n(δ) and the other pure strategies, which belong to T i
n(δ),

for i = 0, 1, implement mixtures in Σn that depend on the choices of outsiders oi
n,1.
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5.4. Outsiders’ Payoffs in the Metagames. Next we describe the outsiders’ payoffs in

each metagame Γ̃δ.

The payoffs to o0 depend on the choices of all outsiders except outsiders oi
n,3 for i = 0, 1 and

n = 1, 2. Recall that the convex function γ is linear over each full-dimensional polyhedron T

of T . This linear function extends uniquely to a linear function γT over P 0× P×Π1. Every

mixed strategy profile of the other outsiders induces a unique point (q̃, p̂, π1) ∈ P 0 × P×Π1

and o0’s payoff from choosing T is γT (q̃, p̂, π1).

Outsider oi
n,1 wants to mimic oi

n,3. In particular, if he chooses vi
n and oi

n,3 chooses wi
n then

his payoff is one if vi
n = wi

n and zero otherwise.

Outsider o0
n,2 wants to mimic the actual choice implemented by player n when this choice

belongs to P 0
n . Similarly, outsider o1

n,2 wants to mimic the π1
n implied by n’s choice when he

plays a strategy in P 1
n . Specifically, for i = 0, 1, let ϕi

n : RZi
n → R be the function given by

ϕi
n(r) =

∑
z∈Zi

n
r2
z . For each r ∈ RZi

n , let ξi
n(r, ·) be the affine approximation to ϕi

n at r, i.e.

for each r′ ∈ RZi
n , ξi

n(r, r′) =
∑

z(r
2
z + 2rz(r

′
z − rz)). Suppose now that oi

n,2 chooses a pure

strategy si,δ
n,2 and n chooses a pure strategy s̃n in S̃n(δ). If s̃n is in T 0

n(δ) or T 1
n(δ) then let qn

be the actual strategy in Pn that is implemented based on p0
n(v0

n) or p1
n(v1

n) where for each

i, vi
n is the choice of outsider oi

n,1; and otherwise let qn = s̃n. For outsider o0
n,2, his payoff is

zero if qn /∈ P 0
n ; otherwise, it is ξ0

n(s0,δ
n,2, qn). For outsider o1

n,2, his payoff is zero if qn ∈ P 0
n ;

otherwise it is ξ1
n(s1,δ

n,2, π̄
1
n(qn)).

The payoff to outsider oi
n,3 depends on the choices of all other outsiders. If o0 chooses

a polyhedron T then there exists a unique multisimplex L of L that contains T . For each

vertex wi
n of V i

n, and each vertex ṽ of L, let ui
n,2(T, ṽ, wi

n) = 1 if wi
n is the image of ṽ under g̃i

n

and zero otherwise, where g̃i
n is the (n, i)-th coordinate map of g̃. The function ui

n,2 extends

multilinearly to L and, since L is full-dimensional, to the whole of P 0 × P × Π1, denoted

still by ui
n,2(T, ·, wi

n). Given an arbitrary mixed strategy of the other players, if o0 chooses

T and oi
n,2 chooses wi

n then the payoff of oi
n,2 is ui

n,2(T, (p, q), wi
n), where (p, q) is the point

in P 0 × P× Π1 induced by the mixed strategies of the other players.

5.5. Outsiders’ Strategies in a Quasi-Perfect Equilibrium. If Q∗ is a solution of Γ

then, by Axioms B and S, in the metagame Γ̃δ there exists a quasi-perfect equilibrium b̃δ

whose equivalent mixed-strategy profile σ̃δ belongs to a solution and whose image under the

map from the metagame Γ̃δ to Γ is a point in Q∗.

Each player n’s strategy in b̃δ necessarily has the following feature. He avoids going to his

information set where his choices are among the strategies in S1
n(δ) ∪ T 1

n(δ), since each of
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these strategies chooses a non-equilibrium action at some information set on the equilibrium

path. Let q0,δ
n be n’s actual strategy in P 0

n that is implemented by n’s strategy in the profile

b̃δ in the metagame Γ̃δ. By construction, q0,δ
n belongs to Q∗

n.

Let x̃δ ≡ (q̃0,δ, p0,δ, π̃1,δ) be the point in P 0 × P × Π1 that is induced by the profile σ̃δ
o of

the outsiders’ strategies in the equilibrium σ̃δ.

Under b̃δ, after n has rejected all strategies in S0
n and T 0

n(δ), consider the strategy imple-

mented by n. Let (1− α1,δ
n ) be the total probability of choosing a duplicate in T 1

n(δ) under

b̃δ. Then n’s choice at this information set is equivalent to an enabling strategy in Pn of the

form

q̌δ
n ≡ (1− α1,δ

n )((1− δ)p̌0,δ
n + δp1,δ

n ) + α1,δ
n r1,δ

n ,

where: (i) p̌0
n(δ) is the mixture over strategies tn such that the strategy t1n(δ) is played

with positive probability at this information set; (ii) p1,δ
n = pi

n(σ̃i
n,1) is the enabling strategy

induced by the equilibrium strategy σ̃i
n,1 of outsider oi

n,1; (iii) r1,δ
n is the enabling strategy in

P 1
n that is obtained from n’s actual mixture over strategies in S1

n if α1,δ
n > 0, and is arbitrary

otherwise. Let

q1,δ = (δ(1− α1,δ
n ) + α1,δ

n )
−1

(δ(1− α1,δ
n )p1,δ

n + α1,δ
n r1,δ

n ) .

Then π̄1
n(q̌δ

n) = π̄1
n(q1,δ

n ) ≡ π1,δ
n .

The following lemma characterizes the important aspects of the outsiders’ equilibrium

strategies.

Lemma 5.2. The equilibrium strategies of the outsiders satisfy the following properties.

(1) For each n, suppose the vertices in the support V i,δ
n of oi

n,3’s equilibrium strategy

span a simplex Ki,δ
n of Ki

n. Then pi,δ
n belongs to Ki,δ

n .

(2) If every polyhedron in the support of o0’s strategy contains x̃δ then, for each n and

i, the vertices in V i,δ
n span a simplex K i,δ

n , and g̃n,i(x̃
δ) belongs to the interior of a

simplex K̄i,δ
n that has K i,δ

n as a face.

(3) Every polyhedron in the support of o0’s strategy contains x̃δ.

(4) q̃0,δ
n is within δ of q0,δ

n and π̃1,δ
n is within δ of π1,δ

n .

Proof of Lemma. Outsider oi
n,1 wants to mimic outsider oi

n,3. So, if the vertices of V i,δ
n span

a simplex K i,δ
n then the payoff to oi

n,1 from choosing a vertex wi
n is positive if it belongs to

V i,δ,
n and zero otherwise. Point (1) follows.

Let L̄ = L0 × (L̃0 × L1) × LΠ be the unique multisimplex of L that contains x̃δ in its

interior. For each polyhedron T in the support of o0’s strategy, there exists a full-dimensional

multisimplex L̂ of L that contains T . Obviously L̂ has L̄ as a face. oi
n,3’s payoff from choosing
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a strategy wi
n if o0 chooses such a T , and given the strategies of the other outsiders, is positive

if it is the image of a vertex of L̄ under g̃i
n and zero otherwise. Since the image of the vertices

of L̄ under the coordinate function g̃i
n span a simplex K̄i,δ

n , g̃i
n(x̃δ) ∈ K̄i,δ

n and the vertices of

V δ
n,i span a face of K̄ i,δ

n . Therefore, point (2) follows.

For each polyhedron T of T , o0’s payoff from T is γT (x̃δ) and by construction, γT (x̃δ) 6
γ(x̃δ) with the inequality being strict iff x̃δ does not belong to T , which proves (3).

It remains to prove (4). The actual strategy implemented by n is q0,δ
n , which belongs to

P 0
n . o0

n,2’s payoff function is such that his best replies to q0,δ
n are the points in S0,δ

n that are

closest to q0,δ
n . Thus q̃0,δ

n is within δ of q0,δ
n . Since q0,δ

n belongs to P 0
n , all of o1

n,2’s strategies

yield a payoff of zero against q0,δ
n . However, since the behavioral strategy b̃δ is a quasi-perfect

equilibrium, there exists a sequence of completely mixed behavioral strategies b̃ε,δ converging

to b̃δ against which o1
n,2’s equilibrium strategy σ̃δ

n,2 is a best reply. Under the sequence b̃ε,δ,

there is a positive probability that player n moves into the third stage of his choice and

makes a choice among strategies in S1
n ∪ T 1

n(δ). The fact that σ̃δ
n,2 is optimal against the

sequence implies that it is optimal against the limiting choice q̌δ
n there. Since π̄1

n(q̌δ
n) = π1,δ

n ,

o1
n,2’s best replies are within δ of π1,δ

n and thus π1,δ
n is within δ of π1,δ

n as well. ¤

5.6. Limits of the Quasi-Perfect Equilibria of the Metagames. Consider a sequence

of δ’s converging to zero and a corresponding sequence b̃δ of quasi-perfect equilibria in so-

lutions of the metagames Γ̃δ. Let σ̃δ be an equivalent sequence of mixed strategies and let

(q̃0,δ, (p0,δ, p1,δ), π̃1,δ) be the sequence in Q∗ × P× Π1 induced by the outsiders’ strategies.

Let q̃0,0, (p0,0, p1,0), and π̃1,0 be the corresponding limits of q̃0,δ, (p0,δ, p1,δ), and π̃1,δ. Let

q0,0 and π1,0 be the limits of q0,δ and π1,δ. By properties (1)-(3) of the previous lemma,

for each δ, n, i, there exists a simplex K̄i,δ
n of Ki

n that contains both g̃n,i(q̃
0,δ, (p0,δ, p1,δ), π̃1,δ)

and pi,δ
n , with the former belonging to its interior. By property (4) of the previous lemma,

q̃0,0 = q0,0 and π̃1,0 = π1,0.

By passing to a subsequence, we can assume that there exist multisimplices L̄ of L and

K̄ of K such that for all δ, (q̃0,δ, (p0,δ, p1,δ), π̃1,δ) belongs to the interior of L̄ and its image

under g̃ belongs to the interior of K̄—hence K̄ also contains (p0,δ, p1,δ). Going to the limit,

(q0,0, (p0,0, p1,0), π1,0) belongs to L̄ and its image under g̃ belongs to K̄; also (p0,0, p1,0) belongs

to K̄. Since L̄ and K̄ are multisimplices and g̃ is a multisimplicial map, we have that for

all δ, xδ ≡ (q0,0, (p0,δ, p1,0), π1,0) belongs to L̄, and g̃(xδ), (p0,δ, p1,0) ∈ K̄. If we show that for

small δ, xδ belongs to Q, then by construction this implies that the degree of ψ is nonzero

and xδ ∈ U(x∗), and therefore q0,0 ∈ U(q0,∗), which proves the theorem. The remainder of

the proof establishes this fact.
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5.7. Insiders’ Strategies in a Quasi-Perfect Equilibrium. Let b̃ε,δ be a sequence of

completely mixed behavioral strategies converging to b̃δ against which for each insider n and

each information set of n in Γ̃δ, his continuation strategy is optimal. We now study the

important features of both the sequence and its limit. If n chooses sn ∈ S0
n in the first stage

then in the second stage he has the option of revising this strategy to play something in

T 0
n(δ). Therefore, quasi-perfection implies that player n will end up implementing sn with

positive probability in b̃δ
n only if this strategy is at least as good a reply against the sequence

b̃ε,δ as the strategies in T 0
n(δ). Likewise, player n has the option of playing a strategy in T 0

n(δ)

before he decides to play a strategy in S1
n and even when he makes a choice among these

strategies, he has the option of choosing a strategy in T 1
n(δ). Therefore, at the information

set that follows his choice of avoiding strategies in S0
n, b̃δ

n assigns a positive probability to

moving on to a third stage and then choosing a strategy in T 1
n(δ) ∪ S1

n only if one of these

strategies is at least as good a reply against the sequence b̃ε,δ as all the strategies in T 0
n(δ).

Furthermore, at the information set obtained after n avoids strategies in S0
n ∪ T 0

n(δ), b̃δ
n

assigns a positive probability to a strategy sn in S1
n only if sn is at least as good a reply

against the sequence b̃ε,δ as all the strategies in S1
n ∪ T 1

n(δ).

Let σ̃ε,δ be a sequence of mixed strategy profiles that is equivalent to the sequence b̃ε,δ

of behavioral strategy profiles. For each player n, his strategy σ̃ε,δ
n in the sequence is a

mixture over his pure strategy set S̃n = Sn ∪T 0
n(δ)∪T 1

n(δ). However, the implications of n’s

strategy (for m’s choices) depend on the choices of the outsiders through their implications

for strategies in T 0
n(δ) and T 1

n(δ). Each strategy tin(δ) plays tn with probability (1− δ) and

with probability δ plays a strategy in P i
n that is determined by oi

n,1’s strategy. In order to

fully capture the impact that oi
n,1 has on tin(δ), let W i

n be the vertex set of Ki
n. Let T̄ i

n(δ) be

the union over all wi
n ∈ W i

n of the sets T i
n(δ, pi

n(wi
n)). Let S̄n = Sn ∪ T̄ 0

n(δ) ∪ T̄ 1
n(δ) and let

Σ̄n be the set of mixtures over S̄n.

Since W i
n is the pure strategy set of outsider oi

n,1, and σ̃ε,δ is a sequence of completely mixed

strategies, σ̃ε,δ

oi
n,1

has W i
n as its support for all ε in the sequence. The sequence σ̃ε,δ induces

a mixed strategy σ̄ε,δ
n in S̄n for each n as follows. For each sn ∈ Sn, the probability σ̄ε,δ

n (sn)

of sn is σ̃ε,δ
n (sn). For each i = 0, 1, wi

n ∈ W i
n and tn ∈ S0

n, the probability σ̄ε,δ
n (tin(δ, pi

n(wi
n)))

is σ̃ε,δ
n (tin(δ))σ̃ε,δ

oi
n,1

(wi
n). From player m’s perspective it is the sequence σ̄ε,δ

n , or rather its

equivalent sequence in Pn, that matters for his choice.
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5.8. The Induced Lexicographic Probability System. By Blume, Brandenburger, and

Dekel [1, Appendix Proposition 2], we can construct for each player n a lexicographic prob-

ability system (LPS) Λ̄δ
n = (σ̄0,δ

n , . . . , σ̄
ln(δ),δ
n ) over his strategies in S̄n such that for each ε in

a subsequence converging to zero,

σ̄ε,δ
n = (1−ν0(ε))(σ̄

0,δ
n +ν0(e)((1−ν1(ε))σ̄

1,δ
n +ν1(ε)((1−ν2(ε))σ̄

1,δ
n + · · ·+νln(δ)−1(ε)σ̄

ln(δ),δ
n )) ,

where (ν0(ε), . . . , νln(δ)−1(ε)) is a sequence in Rln(δ)
+ converging to the origin.

Quasi-perfection implies that σ̄0,δ
n is equivalent to the enabling strategy q0,δ

n in Γ and it

is a lexicographic best reply to Λ̄δ
m. Let l0,δ

n be the first level in Λ̄δ
n at which some strategy

in T̄ 0
n(δ) appears with positive probability. Let l1,δ

n be the first level of Λ̄δ
n at which some

strategy in S1
n ∪ T̄ 1

n(δ) appears with positive probability.

From the LPS Λ̄δ
n construct an LPS Λδ = (q0,δ

n , . . . , qln,δ
n ) for Γ where for each l, ql,δ

n is an

enabling strategy in Γ that is equivalent to σ̄l,δ
n . q0,δ

n is a lexicographic best reply against Λδ
m.

For each wi
n ∈ W i

n, the total probability under σ̄li,δn
n of the strategies in T i

n(δ, pi
n(wi

n)) is the

limit σ̃δ
oi

n,1
(wi

n) of the sequence σε,δ

oi
n,1

(wi
n). Since pi

n(σ̃δ
oi

n,1
) is, by definition, pi,δ

n , we have that

level li,δn is expressible as a convex combination λ
lin,δ
n pi,δ

n + (1 − λ
lin,δ
n )r

lin,δ
n with λ

lin,δ
n > 0 and

r
lin,δ
n ∈ Pn. Since l1,δ

n is the first level of Λδ that does not have its support in P 0
n , π̄1

n(q
l1n,δ
n )

equals π1,δ
n , which recall was computed from n’s strategy under b̃δ in the third stage of his

choice.

We claim that for each l 6 l0,δ
n , ql,δ

n induces the equilibrium outcome against q0,δ
m . Indeed,

since q0,δ
m belongs to Q∗, and the strategies in T 0

n(δ) always implement some strategy in P 0
n

regardless of the choice of outsider o0
n,1, all the strategies in T 0

n(δ) are optimal against q0,δ
m .

By quasi-perfection, this implies that every strategy in S̄n that appears at a level l 6 l0,δ
n of

Λ̄δ
n must be a best reply to q0,δ

m . Thus for all l 6 l0,δ
n , ql,δ

n is a best reply to q0,δ
m . Since q0,δ

m is

a lexicographic best reply to Λδ
n, (q̃n(ε), q0,δ

m ) is an equilibrium of the game Γ for all small ε,

where

q̃n(ε) = (1− ε) q0,δ
n + ε((1− ε)q1,δ

n + ε2((1− ε)q2,δ
n + ε3(· · ·+ εl0,δ

n ql0,δ
n

n ) .

By genericity of payoffs, Γ has finitely many equilibrium outcomes, so each of these equilibria

induces the same equilibrium outcome—hence the claim follows. Three implications of this

claim are: (i) l1,δ
n > l0,δ

n ; (ii) the enabling strategy r
l1n,δ
n in the previous paragraph belongs

to P 0
n ; (iii) all levels up to l0,δ

n prescribe the same mixture at each information set on the

equilibrium path and differ only at information sets excluded by (all of) m’s equilibrium

strategies in Q̄∗
m, which is the ρm-image of the component Σ̄∗

m of equilibria.
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5.9. Limit of the Lexicographic Probability System. Take a subsequence of the δ’s

such that the following properties hold for the associated LPSs Λδ
n for each n: (i) li,δn is

independent of δ for each i, call it lin; (ii) for each l 6 l1n, the face of Pn that contains ql,δ
n in

its interior, as well as the strategies for m that are best replies to ql,δ
n , are independent of δ.

Let σ
l1n,δ
n be a sequence of strategies in Σn that is equivalent to the sequence q

l1n,δ
n . Again

using Blume, Brandenburger, and Dekel [1, Appendix Proposition 2], there is now an LPS

(σ
l1n,0
n , . . . , σ

l1n,kn
n ) and a sequence (µ0(δ), . . . , µkn−1(δ)) ∈ Rkn converging to zero such that for

a subsequence of δ’s, σ
l1n,δ
n is expressible as the nested combination

σl1n,δ
n = (1−µ0(δ))(σ

l1n,0
n +µ0(δ)((1−µ1(δ))σ

l1n,1
n +µ1(δ)((1−µ2(δ))σ

l1n,2
n + · · ·+µkn−1(δ)σ

l1n,kn
n ))

This LPS induces an equivalent LPS (q
l1n,0
n , . . . , q

l1n,kn
n ) in enabling strategies.

Let k1
n be the first level k of this LPS where q

l1n,k
n does not belong to P 0

n . Recall from the

previous section that q
l1n,δ
n is expressible as a convex combination λ

l1n,δ
n p1,δ

n + (1 − λ
l1n,δ
n )r

l1n,δ
n

and that π̄1
n(q

l1n,δ
n ) = π1,δ

n . Express r
l1n,δ
n as a convex combination α0,δ

n r0,δ
n + α1,δ

n r1,δ
n , where for

i = 0, 1, ri,δ
n ∈ P i

n. Then λ
l1n,δ
n +(1−λ

l1n,d
n )α1,δ

n > 0 since q
l1n,k
n does not belong to P 0

n . Going to

a subsequence, let λ1
n be the limit of (λ

l1n,δ
n + (1− λ

l1n,δ
n )α1,δ

n )
−1

λ
l1n,δ
n and let r1,0

n be the limit of

r1,δ
n . Since the limit of p1,δ

n is p1,0
n , we have that q

l1n,k1
n

n is expressible as a convex combination

ζn(λ1
np1,0

n + (1 − λ1
n)r1,0

n ) + (1 − ζn)p̌0
n for some ζn > 0 and p̌0

n ∈ P 0
n . Moreover, since π1,0

n is

the limit of π1,δ
n , π̄1

n(q
l1n,k1

n
n ) = π1,0

n .

For each δ in the subsequence used above, define now an LPS Λ̂δ
n = (q̂0,δ

n , . . . , q̂
l1n+k1

n+1,δ
n ) as

follows: q̂0,δ
n = q0,0

n , q̂l,δ
n = ql−1,δ

n if 0 < l 6 l1n, and q̂l,δ
n = q

l1n,l−l1n−1
n otherwise. The strategy q̂l,δ

n

is independent of δ for l = 0 and l > l1n. Each level l < l1n + k1
n +1 is a strategy in P 0

n . q̂
l0n+1,δ
n

is a convex combination λ
l0n,δ
n p0,δ

n + (1 − λ
l0n,δ
n )r

l0n,δ
n while q̂

l1n+k1
n+1,δ

n is a convex combination

ζn(λ1
np1,0

n + (1− λ1
n)r1,0

n ) + (1− ζn)p̌0
n where ζn > 0 and π̄1

n(q̂
l1n+k1

n,δ
n ) = π1,0

n . The next lemma

sets out the key properties of Λ̂δ
n that lead to a conclusion of our proof.

Lemma 5.3. For all small δ, the LPS Λ̂δ
n satisfies the following properties.

(1) A strategy is at least as good a reply against Λδ
n as another only if it is at least as

good a reply against Λ̂δ
n.

(2) If λ1
n < 1, then the strategy r1,0

n is a best reply to q0,0
m and is at least as good a reply

lexicographically against Λδ
m as every strategy in S1

n.

(3) λ1
n > 0 and every level l < l1n + k1

n + 1 induces the equilibrium outcome against q0,0
m .
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(4) The strategy q̂l,δ
n for l < l0n and the strategy r

l0n,δ
n if λ

l0n,δ
n < 1 are lexicographic best

replies against q̂δ
m.

Proof of Lemma. Suppose sm is a better reply against Λ̂δ
n than another strategy tm. We

show that sm is also a better reply against Λδ
n. Let l be the first level of Λ̂δ

n such that sm is

a better reply against q̂l,δ
m than tm. If l = 0 then for all small δ, sm is a better reply against

q0,δ
n since q̄0,δ

n equals the limit q0,0
n of q0,δ

n ; thus against Λδ
n, tm is a worse reply against the

very first level. If 0 < l < l1n + 1 then obviously sm is better reply against Λδ
n than tm since

level l of Λ̄δ
n corresponds to level l − 1 of Λδ

n. Suppose then that l1n + 1 6 l 6 l1n + k1
n + 1.

Then for all small δ, sm is a better reply against q
l1n,δ
n since q

l1n,δ
n is a nested combination of

(q
l1n,0
n , . . . , q

l1n,kn
n ). Thus, sm is a better reply against Λδ

n. This proves (1).

In the game Γ̃δ player n, when finally making a choice among the strategies in S1
n ∪T 1

n(δ),

would choose a strategy sn in S1
n with positive probability only if it is at least as good a

reply against Λδ
n as the other strategies in S1

n. Therefore, such a strategy would show up

with positive probability under level l1n of Λ̃δ
n (and hence in Λ̄δ

n) only if this is the case. This

implies that if (1 − µ
l1n,δ
n )α1

n is positive, then the strategy r1,δ
n is at least as good a reply

against Λδ
n as the strategies in S1

n. Recall that r1,0
n is the limit of r1,δ

n and λ1
n is the limit

of (µ
l1n,δ
n + (1− µl1n,δ)α1,δ

n )
−1

µ
l1n,δ
n . Therefore, by point (1) of this lemma, r1,0

n is at least as

good a reply against Λ̂δ
n as strategies in S1

n if λ1
n < 1. To show that it is also a best reply

against q0,0
m , suppose to the contrary that it is not. Then every strategy in T 1

n(δ), regardless

of outsider o1
n,1’s choice, is a better reply against q0,δ

m for all small δ, since for δ = 0 these

strategies are in P 0
n , which are best replies to q0,0

m . Therefore, quasi-perfection implies that

n would prefer to play the strategies in T 1
n(δ) rather than implementing r1,0

n (or r1,δ
n when δ

is small), which shows that (1 − µl1n,δ)αl,δ
n = 0 for all small δ and hence that λ1

n = 1. This

proves (2).

We turn now to (3). Every strategy q̂l,δ
n for l < l1n+k1

n+1 belongs to P 0
n and is thus optimal

against q0,0
m , which belongs to Q∗

m. The strategy p̌0
n (which recall is part of the expression

defining q
l1n,k1

n
n ) which is chosen with positive probability is also in P 0

n and hence optimal

against q0,0
m . As we saw in the previous paragraph, if λ1

n < 1, the strategy r1
n must also be

optimal against q0,0
m . Obviously q0,0

m is optimal against Λ̂δ
n since it is the limit of q0,δ

m , which

by point (1) is optimal against Λ̂δ
n. Therefore, for all small ε, (q0,0

m , qn(ε)) is an equilibrium
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of Γ, where

q̃n(ε) =

( l1n+k1
n∑

l=0

εl + (1− 1λ1
n>0)ε

l1n+k1
n+1

)−1( l1n+k1
n∑

l=0

εlq̂l,δ
n + (1− 1λ1

n>0)ε
l1n+k1

n+1q̂l1n+k1
n+1

n

)

where 1λ1
n>0 is the indicator function. This is impossible if λ1

n = 0, since q̂
l1n+k1

n+1
n is a

convex combination of a strategy in P 0
n and one in P 1

n . Thus λ1
n > 0. Moreover, since this

is a continuum of equilibria, genericity implies that all of them induce the same outcome.

Therefore, all strategies at levels preceding l1n+k1
n+1 induce the equilibrium outcome against

q0,0
m .

Lastly we prove (4). By the previous paragraph, all strategies in P 0
n are optimal against

q̂k,δ
m for k 6 l1m +k1

m. Thus the optimality of a strategy in P 0
n depends on how it fares against

q̂
l1m+k1

m+1
m . If a strategy sn ∈ S0

n is not optimal against this strategy, then for all small δ,

some strategy in T 0
n(δ) is a superior reply to q̂

l1m,k1
m

m regardless of what outsider o0
n,1’s choice

is. Thus, such a duplicate strategy is a better reply against Λδ
m than sn. Therefore, in the

quasi-perfect equilibrium of Γδ, player n when given a choice of actually implementing sn

will prefer this duplicate strategy in T 0
n(δ), i.e. the probability of sn is zero for all l 6 l0n in

Λδ
n. Point (4) now follows. ¤

5.10. Final Step of the Proof. Fix a small δ that satisfies the properties enumerated in

Lemma 5.3 of the previous subsection. Let

q̄0
n(ε) =

( ∑

l6l0n+1

εl

)−1( ∑

l6l0n+1

εlq̂l,δ
n

)

q̄1
n(ε) =

( l1n+k1
n+1∑

l=l0n+2

εl

)−1( l1n+k1
n+1∑

l=l0n+2

εlq̂l,δ
n

)
.

Observe that q̄0
n(ε) belongs to P 0

n for all ε and it is a convex combination of p0,δ
n and a

subset R0
n of strategies that are at least as good replies against Λ̂δ

m as other strategies in S0
n.

Likewise q̄1
n(ε) is a convex combination of p1

n, r1
n and a point in P 0

n such that the strategy r1
n

if it has a positive weight is at least as good a reply against Λ̂δ
m as other strategies in P 1

n .

There exists a small ε such that a strategy sm is at least as good as a strategy tm against

Λ̂δ
n iff it is lexicographically at least as good a reply against the LPS (q0, q̄0

n(ε), q̄1
n(ε)). Since

π̄1
n(q̄1

n(ε)) = π̄1
n(q1,0

n ) = π1,0 for all ε, it follows that (q0, (p0,δ, p1,0), π1,0) belongs to Q. As we

noted earlier, proving that this point belongs to Q shows that in fact it belongs to U(x∗)

and hence that q0 in U(q0,∗), which completes the proof. ¤
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Remark 5.4. In the case where S1
n is empty for exactly one player n, as we said initially

in the description of P and Q, we do not have the factor P 1
n or Π1

n. In the family of games

Γ(δ, p̂), player n decides provisionally in the first stage on the strategy in Sn to play and

in the second stage gets to execute it or switch to playing a strategy in Tn(δ, p̂). In the

metagame, we do not have outsiders o1
n,j for j = 1, 2, 3. The rest of the analysis is essentially

the same modulo these provisions.

6. Concluding Remarks

Like our previous paper [10] on forward induction, the characterization in this paper is a

step toward a theory of equilibrium refinement using axioms adapted from decision theory.

Theorem 5.1 is confined to games in extensive form with perfect recall, two players, and

generic payoffs, but it suggests that an extension to more general games might be possible.

We hope also that Axiom B can be weakened to require only that a solution contains a

sequential equilibrium for which each player’s strategy is conditionally admissible from each

of his information sets—thus keeping the axioms entirely within standard decision theory.

Previously, some proposed refinements selected equilibria with one or more desirable prop-

erties, like admissibility, subgame perfection, or sequential rationality. Other proposed re-

finements derived some properties from limits of equilibria of perturbed games, such as

perfect, quasi-perfect, and proper equilibria. In the latter approach, a key step forward was

Kohlberg and Mertens’ [14] argument that an axiomatic development requires set-valued

refinements. Their program achieved remarkable success with Mertens’ [19] definition of a

stable set, which has the desirable properties 1, 2, 3 listed in Section 1 and others too, such

as ordinality and immunity to splitting players into agents.

However, an axiomatic theory of refinement should be based on basic principles of rational

behavior in the game at hand, as in decision theory. This precludes reliance on perturbed

games obtained by perturbing players’ sets of feasible strategies. The challenge, therefore,

has been to establish why consideration of perturbed games yields the requisite decision-

theoretic properties.

Our answer here begins with Axiom S, which generalizes the invariance criterion of Kohlberg

and Mertens’ [14] and the small worlds criterion of Mertens’ [21], as explained in Section

3.3. Absent a strong invariance property like Axiom S, a refinement is vulnerable to ‘fram-

ing effects’ depending on wider contexts in which the given game might be embedded. In

decision theory, such effects were examined by Savage [28], and in cognitive psychology they

play a prominent role in interpreting decisions by subjects in experiments, as for instance

in Kahneman and Tversky [13]. For a theory of thoroughly rational behavior, however, an



26 SRIHARI GOVINDAN AND ROBERT WILSON

axiom should exclude framing effects. Axiom S does this by requiring a solution of a game

to be consistent with the solution of any metagame in which it is embedded. As shown in

Proposition 3.4, it is already true of any equilibrium that it is consistent with an equilibrium

of any metagame in which the game is embedded. Axiom S merely extends to refinements

this fundamental invariance property of equilibria.

Our answer continues with the proof of Theorem 4.1 in Appendix B. There it is shown

that a set Q∗ of equilibria in enabling strategies is stable iff the corresponding projection

map from the pseudomanifold Q to the space P of enabling strategies is essential. Using this

key property, the proof of Theorem 5.1 shows that for each equilibrium in a component of

undominated equilibria there exists a corresponding metagame for which the equilibrium is

the image of a quasi-perfect equilibrium in the metagame if and only if the projection map

is essential. Hence Axioms A, B, S imply that a solution is a stable set, and conversely due

to Mertens’ previous proofs.

The answer to the ‘why’ question above is thus that, given Axioms A and B, stability

with respect to perturbed games is equivalent to an analogous ‘stability’ with respect to

embeddings in metagames, as required by Axiom S. Because in practice every game is em-

bedded in some wider context, we view Axiom S’s requirement that a refinement is immune

to presentation effects as the relevant criterion from the perspective of decision theory. This

view is reinforced by the facts that Nash equilibria satisfy Axiom S, and that together with

Axioms A and B, the implied refinement agrees with stability based on perturbed games.

For a refinement satisfying the axioms, Theorem 5.1 establishes that a solution of a game

must be a component of its undominated equilibria, and that the component must be es-

sential. Because payoffs are assumed to be generic, all equilibria in the component have the

same paths of equilibrium play and thus the same distribution of outcomes. Therefore the

main implication for equilibrium refinements is that a predicted outcome distribution should

result from equilibria in an essential component of undominated equilibria, and in particular,

from the sequential equilibria it necessarily contains.

A secondary implication is that after deviations from equilibrium play, the continuations of

all equilibria in the component remain admissible and sequentially rational, where those that

are not sequential equilibria of the original game are justified by beliefs induced by quasi-

perfect equilibria of corresponding metagames that embed the given game. This provides

one resolution of the conundrum posed by Reny [25, 26, 27].
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Figure 1. A game tree and its pure reduced normal form in which each pure
strategy is identified by the terminal nodes it does not exclude.

Appendix A. Enabling Strategies

In the normal-form representation of a game in extensive form, a player’s pure strategy

specifies the action chosen at each of his information sets in the game tree. However, out-

comes are not affected by a strategy’s actions at information sets excluded by his previous

actions. One therefore considers equivalence classes of pure strategies. Say that two pure

strategies are outcome equivalent if the sets of terminal nodes they do not exclude are the

same. For instance, the game in Figure 1 is shown on the left side in extensive form and on

the right side in the ‘pure reduced normal form’ (PRNF) introduced by Mailath, Samuelson,

and Swinkels [18]. In the PRNF, each outcome-equivalent class of player 1’s pure strategies

is identified by the terminal nodes it does not exclude, as indicated by labels of rows along

the left side; and each equivalence class of player 2’s pure strategies is identified by the ter-

minal nodes it does not exclude, as indicated by labels of columns along the top. Because

this game has no moves by Nature, each row and column determine a unique outcome that

is the intersection of the row and column labels, shown as the corresponding entry in the

matrix.

A similar example is shown in Figure 2 for the game tree of a signaling game. In this case,

each profile of pure strategies determines a pair of outcomes such that the first or second

outcome occurs depending on whether Nature’s initial move is up or down. For instance,

the outcome of 1’s strategy abcd and 2’s strategy aceg is a with probability p and c with

probability 1− p.

Say that a terminal node that is not excluded is an enabled outcome. A pure strategy of

a player enables outcome z if it chooses all his actions on the path to z. A player’s mixed

strategy randomizes over his pure strategies, whereas a behavioral strategy randomizes over
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Figure 2. The game tree of a signaling game and its pure reduced normal
form in which each pure strategy is identified by the terminal nodes it does
not exclude.

actions at each of his information sets. A strategy of either kind induces a probability

distribution over outcome-equivalent classes of his pure strategies, and thus a distribution

over enabled outcomes. Such a distribution is called an enabling strategy. A point pn ∈ [0, 1]Z

is an enabling strategy for player n if it is the distribution over enabled outcomes induced

by some mixed or behavioral strategy, i.e. pn(z) is the mixed strategy’s probability of those

pure strategies that enable outcome z. The vertices of the polyhedron Pn of n’s enabling

strategies correspond to outcome-equivalent classes of n’s pure strategies in the PRNF, as

in Figures 1 and 2. Enabling strategies are minimal representations of strategic behavior in

games with perfect recall.9

Let p∗(z) be the probability that Nature’s strategy enables outcome z, which is 1 if Nature

has no moves. Then for each profile p ∈ P =
∏

n Pn of players’ enabling strategies, the

probability that outcome z results is γz(p) = p∗(z)
∏

n pn(z), because Nature and the players

randomize independently. The extensive form is therefore summarized by the multilinear

function γ : P → ∆(Z) ⊂ RZ that assigns to each profile of players’ enabling strategies a

distribution over terminal nodes, including the effect of Nature’s enabling strategy. Player

n’s expected payoff is Gn(p) =
∑

z γz(p)un(z). The game Γ is therefore summarized by the

multilinear function G : P → RN that assigns to each profile of players’ enabling strategies

their expected payoffs. This summary specification is called the enabling form of the game.

Appendix B. Proofs of Propositions

B.1. Proof of Proposition 3.3. A multilinear map fn : Σ̃n × Σo → Σn is completely

specified by its values at profiles of pure strategies. We use f̂n to denote the restriction of

fn to the set S̃n × So of profiles of pure strategies.

9Mertens [21, p. 554] introduces the mapping of mixed strategies to induced distributions on terminal
nodes. Koller and Megiddo [15] call them realization plans.
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Proposition B.1. G̃ embeds G via a collection of multilinear maps f = (fn)n∈N if and only

if for each player n there exists T̃n ⊆ S̃n and a bijection πn : T̃n → Sn such that for each

(s̃, so) ∈ S̃ × So and t̃n ∈ T̃n:

(1) f̂n(t̃n, so) = πn(t̃n),

(2) G̃n(s̃, so) = Gn(f̂(s̃, so)), where f̂ = (f̂n)n∈N .

Proof. Suppose we have a game G̃ : Σ̃ × Σo → RN∪ o and a collection of multilinear maps

fn : Σ̃n × Σo → Σn, one for each n ∈ N , such that conditions (1) and (2) of the proposition

are satisfied. Then, by condition (1) and multilinearity of fn for each n, for each fixed

σo, fn(·, σo) is surjective because it maps the face spanned by T̃n homeomorphically onto

Σn. Also, condition (2) and multilinearity of each fn imply that G̃ = G ◦ f . According to

Definition 3.2, therefore, (G̃, f) embeds G.

Now suppose that (G̃, f) embeds G. Let σo be a profile of completely mixed strategies for

outsiders. Because fn is multilinear it induces a linear mapping fn(·, σo) from Σ̃n to Σn that,

by the definition of an embedding, is surjective. Hence, for each sn ∈ Sn there exists a pure

strategy t̃n(sn) in S̃n that is mapped to sn by this linear map. We claim that fn(t̃n(sn), so) =

sn for all so ∈ So. Indeed, observe that fn(t̃n(sn), σo) =
∑

so
fn(t̃n(sn), so)σo(so), where for

each so, σo(so) is the probability of so under σo. Therefore, since σo is completely mixed, if

fn(t̃n(sn), so) 6= sn for some so then fn(t̃n(sn), σo), which is an average of values at vertices of

So, cannot be sn. Thus, fn(t̃n(sn), so) = sn for all so. Let T̃n ⊂ S̃n be a collection comprising

a different pure strategy t̃n(sn) for each sn ∈ Sn and let πn be the associated bijection. Define

f̂n : S̃n × So → Σn by f̂n(s̃n, so) = fn(s̃n, so). Then conditions (1) and (2) of the proposition

are satisfied. ¤

B.2. Proof of Proposition 3.4.

Proposition B.2. If (G̃, f) embeds G then the equilibria of G are the f -images of the

equilibria of G̃.

Proof. Suppose (σ̃, σo) is an equilibrium of G̃ and let σ = f(σ̃, σo). For any insider n and his

strategy τn ∈ Σn there exists τ̃n ∈ Σ̃n such that fn(τ̃n, σo) = τn because fn(·, σo) is surjective

by condition (a) of Definition 3.2 an embedding. Using condition (b),

Gn(τn, σ−n) = Gn(f(τ̃n, σ̃−n, σo)) = G̃n(τ̃n, σ̃−n, σo) 6 G̃n(σ̃, σo) = Gn(f(σ̃, σo)) = Gn(σ) ,

where the inequality obtains because (σ̃, σo) is an equilibrium of G̃. Hence σ is an equilibrium

of G.
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Conversely, suppose σ is an equilibrium of G. For each n, let πn be the bijection given by

Proposition 3.3. Let σ̃n be the strategy for insider n in G̃ defined by σ̃n(t̃n) = σn(πn(t̃n)) for

t̃n ∈ T̃n and σ̃n(s̃n) = 0 for s̃n /∈ T̃n. Since fn is multilinear, by condition (1) of Proposition

3.3, fn(σ̃n, ·) = σn and thus f(σ̃, ·) = σ. Hence, it suffices to show that there exists a

strategy profile σo for outsiders such that (σ̃, σo) is an equilibrium of G̃. By fixing the profile

of insiders’ strategies to be σ̃ one induces a game among outsiders. Let σo be an equilibrium

of this induced game among outsiders. To see that (σ̃, σo) is an equilibrium of G̃, observe

that for each pure strategy s̃n of an insider n:

G̃n(s̃n, σ̃−n, σo) = Gn(fn(s̃n, σo), σ−n) 6 Gn(σ) = Gn(f(σ̃, σo)) = G̃n(σ̃, σo) ,

where the first and second equalities use the property f(σ̃, ·) = σ established above, and the

inequality obtains because σ is an equilibrium of G. ¤

Appendix C. Proof of Theorem 4.1

Theorem C.1. (Q, ∂Q) is a pseudomanifold of the same dimension as (P, ∂P). Moreover,

ψ : (Q, ∂Q) → (P, ∂P) is an essential map iff Q∗ is stable.

Proof. The proof invokes genericity of payoffs by assuming that certain points and polyhe-

dra, identified as they arise during the proof, are in general position. See Appendix D for

elaboration of the character of these genericity requirements.

For any set X, we write d(X) for its dimension. For any subset Tn of Sn, let Pn(Tn) be

the convex hull (in Pn) of the strategies in Tn. For simplicity, we write d(Tn) for d(Pn(Tn)).

See Sections 4.4 and 4.5 for additional notation used below.

For any vertex π1
n of Π1

n, let S1
n(π1

n) be the set of pure strategies that map to π1
n. For any

face Ψ1
n of Π1

n, let S1
n(Ψ1

n) be the set of strategies s1
n such that π̄1

n(s1
n) ∈ Ψ1

n.

Let H0
n be the set of information sets hn ∈ Hn \ H∗

n of player n such that at the last

information set h′n ∈ H∗
n that precedes hn, the action there leading to hn belongs to A∗

n,

which is the set of his equilibrium actions. If a subset T 0
n of S0

n is such that Pn(T 0
n) contains

an equilibrium in Q̄∗
n, then for each first information set hn ∈ H0

n there exists a strategy in

T 0
n that enables hn. Let H1

n = Hn \ (H∗
n ∪H0

n).

Lemma C.2. Suppose T 0
n is a subset of strategies in S0

n such that Pn(T 0
n) contains an

equilibrium q∗n in Q̄∗
n. If the strategies in T 0

n are at least as good replies against p0
m ∈ P 0

m as

other strategies in S0
n, then all the strategies in S0

n are equally good replies against p0
m.

Proof. Let Π∗
n be the projection of P 0

n to RZ∗ , where Z∗ is the set of terminal nodes reached

with positive probability under the equilibria in Q̄∗. Then Z∗ = Z0
n∩Z0

m. Consequently, the
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payoff to a strategy s0
n against p0

m depends on s0
n only through its projection to Π∗

n. Since

the projection of q∗n—which is at least as good a reply as the other strategies in S0
n against

p0
m—belongs to the relative interior of Π∗

n, every strategy in S0
n is a best reply against p0

m. ¤

Lemma C.3. Suppose that T 0
n is a subset of S0

n such that Pn(T 0
n) is a face of P 0

n containing

an equilibrium strategy in Q̄∗
n. For each tn /∈ T 0

n there exists an information set hn ∈ H0
n

that tn enables and where the action chosen by it is avoided by all t0n ∈ T 0
n that enable hn.

Proof. Since Pn(T 0
n) is a face of P 0

n , which is itself a face of Pn, there exists a linear function

f : RZ → R that is zero on Pn(T 0
n) and negative everywhere else on Pn. Fix pm in the interior

of Pm and define a payoff function ũn for n by the equation: p0(z)pm(z)ũn(z) = f(ez) where

ez is the z-th unit vector in RZ . Then when n’s payoff function is ũn, the strategies in Pn(T 0
n)

are the best replies against pm. Take tn /∈ T 0
n . Since it is suboptimal against pm, there exists

an information set hn where the action a chosen by tn is suboptimal. Then hn does not

belong to H∗
n: indeed, since tn belongs to S0

n, a is an equilibrium action if hn ∈ H∗
n; and since

Pn(T 0
n) contains an equilibrium strategy, there exists a strategy in T 0

n that enables such an

hn and chooses a. Let h′n be the last information set preceding hn that belongs to H∗
n. Then

obviously the action chosen by tn at h′n is an equilibrium action and thus hn belongs to H0
n.

Any strategy in T 0
n that enables hn avoids a, which proves the lemma. ¤

For the next lemma, it is worth recapitulating the exact definition of the set Π1
n. Recall

from Section 4.5 that we fix a completely mixed enabling strategy p̄m for player m and

compute for each pn the total probability η(pn) of reaching a terminal node in Z1
n under

(p̄m, pn). Hn is a hyperplane in RZ1
n that separates the projection ψZ1

n
(P 1

n) of P 1
n to RZ1

n

from the origin of RZ1
n and that has (p0(z)p̄m(z))z∈Z1

n
as its normal and some ε > 0 as its

constant. The function π̄1
n maps each point pn ∈ Pn \ P 0

n to ε(η(pn))−1ψZ1
n
(pn) ∈ Hn.

Lemma C.4. For a strategy sn of S1
n, π̄1

n(sn) is a vertex of Π1
n iff there exists a unique

information set hn ∈ H∗
n with the property that sn enables hn and chooses a non-equilibrium

action there.

Proof. Let sn ∈ S1
n be a pure strategy satisfying the condition of the lemma. We prove by

contradiction that π̄1
n(sn) is a vertex of Π1

n. Therefore suppose to the contrary that π̄1
n(sn),

which equals ε(η(pn))−1ψZ1
n
(pn), is not a vertex of Π1

n. We can express π̄1
n(sn) as a unique

convex combination
∑J

j=1 λjπ1,j
n where J > 1 and for each 1 6 j 6 J , π1,j

n is a vertex of

Π1
n. For each j, since π1,j

n is a vertex of Π1
n, we can express π1,j

n as ε(η(s1,j
n ))

−1
ψZ1

n
(s1,j

n ) for

some s1,j
n in S1

n. Since λj > 0, s1,j
n cannot choose a non-equilibrium action at any h′n 6= hn
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in H∗
n that it enables; since it belongs to S1,j

n it must therefore enable hn; and it cannot

choose a different non-equilibrium action from sn at hn. Observe now that the probability

η(pn) and η(s1,j
n ) for all j are equal and exactly the probability that Nature and the strategy

p̄m do not exclude hn. Therefore, ψZ1
n
(pn) =

∑
j λjψZ1

n
(s1,j

n ). Modify s1,j
n to a strategy t1,j

n

so that at every information set other than the successors to hn, t1,j
n agrees with sn, and

at the successors to hn it agrees with s1,j
n . It is now clear that when viewed as enabling

strategies, sn =
∑

j λjt1,j
n and thus sn is a convex combination of the strategies t1,j

n . But that

is a contradiction since sn is a vertex of Pn and all the strategies t1,j
n are different from one

another and from sn as they induce the points π1,j
n that are different from one another and

from π̄1
n(sn) in Hn.

To prove the other way around, suppose sn is a strategy that, at a collection hk
n for k =

1, . . . , K of at least two information sets in H∗
n, chooses a non-equilibrium action. For each k,

choose a strategy s1,k
n in S1

n that enables hk
n, agrees with sn there and at all its successors, but

at other hn ∈ H∗
n, chooses an equilibrium action. Then ψZ1

n
(sn) =

∑
k ψZ1

n
(s1,k

n ). Therefore,

π̄1
n(sn) cannot be a vertex of Π1

n. ¤

For each T 0
n ⊆ S0

n such that Pn(T 0
n) is a face of P 0

n and contains an equilibrium strategy

for n, let S1
n(T 0

n) be the subset of S1
n consisting of strategies s1

n such that for each first

information set h0
n in H0

n that s1
n does not exclude, s1

n agrees with some t0n ∈ T 0
n at h0

n and

all its successors, where t0n has the property that it does not exclude h0
n. For a face Ψ1

n of

Π1
n, let S1

n(T 0
n ; Ψ1

n) = S1
n(Ψ1

n) ∩ S1
n(T 0

n) and Tn ≡ T 0
n ∪ S1

n(T 0
n ; Ψ1

n). For notational simplicity,

we refer to S1
n(T 0

n ; Ψ1
n) as T 1

n . The following lemma provides an important feature of the set

Tn.

Lemma C.5. The strategies in Tn are the vertices of a face of Pn whose dimension is

d(Tn) ≡ d(T 0
n) + d(Ψ1

n) + 1.

Proof. Let T̂ 1
n be the set of strategies t1n in T 1

n such π̄1
n(t1n) is a vertex of Ψ1

n. We will first

show that every tn ∈ Tn \ (T 0
n ∪ T̂ 1

n) is affinely dependent on the strategies in T 0
n ∪ T̂ 1

n . Let

t1n ∈ Tn \ (T 0
n ∪ T̂ 1

n). By Lemma C.4, there exist information sets h1
n, . . . hK

n , K > 1, in H∗
n

such that for each k, t1n chooses a non-equilibrium action ak at hk
n, and at each other hn ∈ H∗

n

it chooses an equilibrium action. Fix t0n ∈ T 0
n that agrees with t1n everywhere except at the

information sets hk
n for each k. For each k let t1,k

n be the strategy that agrees with t1n at

hk
n and its successors, but everywhere else agrees with t0n. Each t1,k

n belongs to T̂ 1
n and also,

t1n =
∑

k t1,k
n − (K − 1)t0n. Thus, t1n is an affine combination of the strategies in T 0

n ∪ T̂ 1
n .
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For each j = 0, . . . , d(Ψ1
n), pick a strategy t1,j

n ∈ S1
n(T 0

n) such that π̄1
n(t1,j

n ) is a vertex of

Ψ1
n. Let T̃ 1

n be the collection of these strategies. We show that strategies in T̂ 1
n \ T̃ 1

n are now

affinely dependent on the strategies in T 0
n∪T̃ 1

n . Fix t1n ∈ T̂ 1
n \T̃ 1

n . By Lemma C.4 there exists a

unique information set hn ∈ H∗
n enabled by t1n and where it chooses a non-equilibrium action.

By construction of T̃ 1
n , there exists a subset (t1,j

n )
J
j=1 of T̃ 1

n such that π̄1
n(t1n) is expressible

as an affine combination
∑

j λjπ̄(t1,j
n ) with λj 6= 0 for all j. For each j, s1,j

n enables hn and

chooses a at hn; at all other information sets in H∗
n it chooses an equilibrium action. Let t0n

be a strategy that agrees with t1n everywhere except at hn and its successors. For each j, let

t0,j
n be a strategy that agrees with t1,j

n everywhere except at hn and its successors, where it

agrees with t0n. Then t1n = t0n +
∑

j λj(t1,j
n − t0,j

n ) and is affinely dependent on the strategies

in T 0
n ∪ T̃ 1

n .

It follows now from the above arguments that the affine space A spanned by T 0
n ∪ T̃ 1

n

contains Pn(Tn) and that the dimension of Pn(Tn) is as stated. To finish the proof of the

lemma, we show that Pn(Tn) is a face of Pn. Let Qn be the smallest face of Pn that contains

Pn(Tn). Suppose Qn 6= Pn(Tn). Then there exists a point pn in the relative of interior of

Pn(Tn) and Qn. Therefore pn can be expressed as a convex combination of the vertices of

Qn in two different ways: (a)
∑

i λ
it0,i

n +
∑

j λjt1,j
n , where the t0,i

n ’s are in T 0
n and the t1,j

n ’s

are in T 1
n ; (b)

∑
i µ

it0,i
n +

∑
j µjt1,j

n +
∑

k µkt2,k
n , where now the t2,k

n ’s are the vertices of Qn

that are not in Tn. Consider one of the t2,k
n ’s. If it belongs to S0

n \ T 0
n then by Lemma C.3

there is an information set hn in H0
n that is enabled by t2,k

n where the action chosen by hn

is avoided all strategies in T 0
n that enable it: that implies under the expression in (b) that

the nodes following this action are assigned a positive probability, but not under (a), which

is impossible. If t2,k
n belongs to S1

n \ T 1
n then it must belong to S1

n(Ψ1
n) since otherwise under

(b) π̄1
n(pn) /∈ Ψ1

n. Since sn /∈ T 1
n there exists an information set hn ∈ H0

n enabled by t2,k
n

where the continuation strategy of t2,k
n coincides with that of some tn ∈ S0

n \ T 0
n but not for

any sn ∈ T 0
n . As in the previous case, this too is impossible. ¤

One corollary of the above result obtains when we take T 1
n to be S1

n and Ψ1
n to be Π1

n. The

dimension of Pn is d(P 0
n) + d(Π1

n) + 1. Observe that P 1
n is a face of Pn iff ψZ1

n
(P 1

n) is a face

of ψZ1
n
(Pn), which is equivalent to saying that Π1

n is homeomorphic to ψZ1
n
(P 1

n). Thus, the

dimension of P 1
n equals d(Π1

n) if P 1
n is a face of Pn and otherwise it equals the dimension of

Pn.

Fix T ≡ ((T 0
1 , Ψ1

1), (T
0
2 , Ψ1

2)), where for each n, Pn(Tn)∩Q∗
n nonempty and Ψ1

n is a (possibly

empty) face of Π1
n. Let An(T ) be the set of points in Pn(T 0

n) such that the strategies in Tm
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are all best replies. Let T̃ 0
n be the unique subset of T 0

n such that the interior of An(T ) is

contained in the interior of Pn(T̃ 0
n). Let d̃∗n(T ) be the dimension of An(T ).

Lemma C.6. If T 1
m is nonempty then An(T ) is a proper face of Q̄∗

n ∩ Pn(T̃ 0
n).

Proof. Since Q∗
n∩Pn(Tn) is nonempty, the strategies in T 0

n are undominated. Hence, Pn(T̃ 0
n)∩

Q̄∗
n = Pn(T̃ 0

n) ∩ Q∗
n ≡ A∗

n(T ). An(T ) is thus a face of A∗
n(T ). There remains to show that

it is a proper face. This follows from the genericity of payoffs. Fix t1m ∈ T 1
m. There exists

an information set hm ∈ H∗
m where it chooses a non-equilibrium action a. If the path from

each (x, a), for x ∈ hm that is reached under the equilibrium outcome, does not pass through

an information set hn ∈ H0
n, then a would be suboptimal against every equilibrium Q̄∗

n.

Thus, there exists a first information set hn ∈ H0
n and nodes x ∈ H∗

m and y ∈ hn such that

(x, a) ≺ y and x is reached under the equilibrium outcome. Because A∗
n(T ) is nonempty,

there is a strategy t0n ∈ T̃ 0
n that enables hn. Clearly, there must be multiple such strategies,

again by genericity. Perturbing the probabilities of the terminal nodes following y does not

affect the payoffs to strategies in T 0
m but they affect the payoff to t1m. Hence An(T ) is a

proper face of A∗
n(T ). ¤

Let T̂ 1
m be the set of strategies sm in S1

m(T 0
m) \ T 1

m such that: (i) sm is an equally good

reply against every point in P 0
n to which the strategies in Tm are equally good replies. Let

T̄ 1
m be the set of strategies sm in S1

m(T 0
m)\ (T̂ 1

m∪T 1
m) that are best replies against every point

in An(T ).

Let B∗
n(T ) be the closure of the points in the interior of P 0

n against which the strategies

in Tm are equally good replies and at least as good replies as strategies in T̄ 1
m. Let d∗n(T )

be the dimension of B∗
n(T ). If T 1

m is empty, let Bn(T ) = P 0
n . Otherwise, let Bn(T ) be the

set of points in P 0
n that are of the form λq0

n + (1 − λ)r0
n such that λ > 1, q0

n ∈ B∗
n(T ), and

r0
n ∈ Pn(T 0

n).

Lemma C.7. Suppose T 1
m is nonempty. Bn(T ) is a polyhedron of dimension d∗n(T )+dn(T 0

n)−
d̃∗n(T ). Each maximal face B′

n(T ) of Bn(T ) satisfies exactly one of the following:

(1) The relative interior of B′
n(T ) is contained in the relative interior of a maximal proper

face of P 0
n .

(2) There exists a strategy rm ∈ T̄ 1
m such that for each p0

n ∈ B′
n(T ), rm is an equally good

reply against every point of the form λp0
n + (1 − λ)r0

n in B∗
m(T ); moreover, in this

case, letting Ř1
m be the set of such rm, for any rm ∈ R̄1

m, if rm is a best reply against

a point in B∗
n(T ) then every point in Ř1

m is also a best reply against this point.
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(3) There exists a maximal proper face of Pn(T 0
n), say Pn(R0

n), such that for each qn ∈
B∗

n(T ), rn ∈ Pn(T 0
n) and λ > 1, if λqn + (1− λ)rn belongs to B′

n(T ), then rn belongs

to Pn(R0
n); moreover, An(T ) is contained in Pn(R0

n).

Proof. Let P̃ 0
n , P̃n(T 0

n), and B̃∗
n(T ) be the convex cones spanned by P 0

n , Pn(T 0
n), and B∗

n(T )

respectively. Let ξ : P 0
n × P̃n(T 0

n) → P̃ 0
n be the function ξ(p0

n, r̃
0
n) = p0

n + r̃0
n. Then for

each p̃0
n, ξ−1(p̃0

n) is a set of dimension d(T 0
n). Hence the dimension of B̂(T ) ≡ ξ−1(B̃∗

n(T )) is

d(T 0
n) + d∗n(T ) + 1. Obviously B̂(T ) is a polyhedron. For each face B̂′

n(T ) of B̂n(T ) and for

all points (p0
n, r̃

0
n) ∈ B̂′

n(T ) at least one of the following holds: (i) p0
n belongs to the boundary

of P 0
n ; (ii) there exists a strategy tm ∈ T̄ 1

m such that ξ(p0
n, r̃0

n) belongs to the convex cone

spanned by the face of B∗
n(T ) where this strategy tm is an equally good reply; (iii) r̃0

n belongs

to the boundary of P̃n(T 0
n).

Observe now that Bn(T ) is the projection of B̂n(T ) onto the first factor. Obviously it is a

polyhedron. For each p0
n ∈ Bn(T ) and each r̃0

n such that (p0
n, r̃

0
n) ∈ B̂n(T ), (p0

n, r̃0
n + λr0

n) ∈
B̂n(T ) for all r0

n ∈ B∗
n(T ) ∩ Pn(T 0

n) and λ > 0. If the set B∗
n(T ) is in generic position (i.e. if

the payoffs are in generic position), then all points in B̂n(T ) that project to p0
n are of this

form. Since the set B∗
n(T )∩Pn(T 0

n) is the intersection of Pn(T 0
n) with the affine space spanned

by An(T ), the dimension of Bn(T ) is as asserted. The enumerated properties of Bn(T ) now

follow directly from the corresponding points above; only the last part of property (iii) needs

a proof. Suppose r0
n belongs to a proper face Pn(R0

n) of Pn(T 0
n) and An(T ) is not contained

in Pn(R0
n). If (p0

n, λr0
n) belongs to B̂n(T ), then so does (p0

n, λr0
n + r̄0

n) for r̄0
n ∈ An(T )\Pn(R0

n)

and λr0
n + r̄0

n does not belong to the convex cone generated by Pn(R0
n). ¤

Let C∗
n(T ) be the closure of the set of qn in the interior of Pn such that the strategies in

Tm are all equally good replies and at least as good as strategies in T̂ 1
m and S0

n \ T 0
n . By

Lemma C.5, the dimension of the face spanned by Tm is d(T 0
m) + d(Ψ1

m) + 1. By genericity

of payoffs, the dimension of C∗
n(T ) is therefore d(Pn)− d(T 0

m)− d(Ψ1
m)− 1.

Let Cn(T ) be the set of (p1
n, π

1
n) ∈ P 1

n × Π1
n such that there exist p0

n ∈ P 0
n , p2

n ∈ Pn(T 1
n),

qn ∈ C∗
n(T ), and µ ∈ R3

+, such that
∑

i µ
ipi

n ∈ C∗
n(T ),

∑
i µ

i = 1, µ1 > 0, and π̄1
n(

∑
i µ

ipi
n) =

π1
n.

Lemma C.8. The set Cn(T ) is a polyhedron of dimension d(P 0
n)+d(P 1

n)+dn(Ψ1
n)−d(T 0

m)−
d(Ψ1

m)−d∗n(T ). On each maximal proper face C ′ of Cn(T ), exactly one of the following holds

for all (p1
n, π

1
n) in C ′. If qn ∈ C∗(T ) is of the form

∑
i µ

ipi
n for some p0

n ∈ P 0
n and p2

n ∈ Pn(T 1
n),

and π̄1
n(

∑
i µ

ipi
n) = π1

n, then:

(1) p1
n belongs to a maximal proper face of P 1

n ;
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(2) for i = 0 or i = 1, but not both, there exists sm ∈ Si
m \T i

m, which actually belongs to

T̂ i
m if i = 1, that is as good a reply as points in Tm against qn; moreover, in this case,

if i = 0, T 0
m and sm span a face of P 0

m of which Pm(T 0
m) is a maximal proper face; and

if i = 1, Ψ1
m and π̄1

n(sm) span a face of Π1
m of which Ψ1

m is a maximal proper face.

(3) there exists a maximal proper face Ψ′ of Ψn such that π̄1
n(p2

n) belongs to Ψ′.

Proof. We show that Cn(T ) is a polyhedron of the stated dimension. Since the construction

is similar to that in the previous lemma, the enumerated properties can be proved just as

before. Let P 2
n be the convex hull of P 0

n and Pn(T 1
n). Using Lemma C.5, the dimension of P 2

n

is d(P 0
n)+d(Ψ1

n)+1. Let P̃ 2
n and P̃n be the convex cones spanned by P 2

n and Pn, respectively.

Define ξ : P 1
n×P̃ 2

n → P̃n by ξ(p1
n, p̃2

n) = p1
n+p̃2

n. Then for each p̃n in the interior of P̃n, ξ−1(p̃n)

is a set of dimension d(P 1
n)+d(P 0

n)+d(Ψ1
n)+1. Letting C̃∗

n(T ) be the convex cone spanned by

C∗
n(T ), the dimension of Ĉn(T ) ≡ ξ−1(C̃∗

n(T )) is d(P 0
n)+d(P 1

n)+d(Ψ1
n)+1−d(T 0

m)−d(Ψ1
m).

The function π̄1
n extends to P̃ \ { 0 }. Cn(T ) is the image of Ĉn(T ) under the function

χ : P 1
n× P̃ 2

n given by χ(p1
n, p̃2

n) = (p1
n, π̄

1
n(p1

n + p̃2
n)) and is thus a polyhedron. As will be shown

in the course of the proof of the next lemma, C∗
n(T ) ∩ Pn(T 1

n) ⊂ P 0
n . Therefore, C∗

n(T ) ∩ P 2
n

is the intersection of P 0
n with the affine space spanned by B∗

n(T ). For each (p1
n, p̃2

n) ∈ Ĉn(T ),

the point (p1
n, p̃2

n+µq0
n) belongs to Ĉn(T ) for all µ > 0 and q0

n ∈ C∗
n(T )∩P 2

n , and has the same

image under χ as (p1
n, p̃

2
n). Moreover, if C∗

n(T ) is in general position then for each (p1
n, π

1
n)

in Cn(T ) every point in its inverse image under χ is expressible in this form. Therefore, the

dimension of Cn(T ) is as given. ¤

Let T be the collection of T ’s such that An(T ), Bn(T ) and Cn(T ) are nonempty for each

n. For each T ∈ T , let Qn(T ) = An(T ) × Bn(T ) × Cn(T ) for each n and let Q(T ) =

Q1(T )×Q2(T ).

Lemma C.9. (q∗, p0, p1, π1) belongs to Q iff it belongs to Q(T ) for some T ∈ T .

Proof. Suppose for each n that q∗n ∈ An(T ), p0
n ∈ Bn(T ), (p1

n, π1
n) ∈ Cn(T ) for some T . Choose

r0
n ∈ Pn(T 0

n) and λ0
n such that q0

n ≡ (1 − λ0
n)p0

n + λ0
nr

0
n ∈ B∗

n(T ). Also, fix p̃0
n, r2

n ∈ Pn(T 1
n),

µ0
n, µ1

n, µ
2
n such that q1

n ≡ µ0
np̃0

n + µ1
np1

n + µ2
nr2

n belongs to C∗
n(T ). Fix points q̄0

n and q̄1
n

in the interior of An(T ) and Bn(T ) for each n and consider for each 0 < ε < 1, the LPS

(q∗, q̃0(ε), q̃1(ε)) where for each n, q̃0
n(ε) = (1−ε)q̄0

n+εq0
n; and q̃1

n(ε) = (1−ε)q̄0
n+εq̄1

n(ε)+ε2q1
n.

The strategies in Tn are equally good replies to q∗m, q̃0
m(ε), q̃1

m(ε) for all ε. We show that these

strategies are lexicographic best replies to (q∗, q̃0(ε), q̃1(ε)) for all small ε, which proves that

(q∗, p0, p1, π1) belongs to Q.
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Observe first that for all ε, a strategy in S0
n \ T 0

n is an equally good reply against q∗m and

q̃0
m(ε) as strategies in T 0

n , by Lemma C.2, and no better a reply against q̃1
m(ε) by construction

of C∗
n(T ). Now for a strategy s1

n in S1
n, consider the strategy t1n that agrees with s1

n everywhere

except that starting at each first information set hn ∈ H0
n that s1

n enables, t1n agrees with

some t0n in T 0
n . Since strategies in T 0

n are at least as good as the other strategies in S0
n,

clearly t1n is at least good a reply against (q∗m, q̃0
m(ε), q̃1

n(ε)). Observe now that t1n belongs to

S1
n(T 0

n). If it belongs to T̂ 1
n , then it is an equally good reply as strategies in Tn against q∗m

and q̃0
m(ε) and no better reply a reply against q̃1

m(ε) by definition. If it belongs to T̄ 1
n then

it is an equally good reply to q∗m, no better reply against q̃0
m(ε) for all ε, and a strictly worse

reply against q̃1
m(ε) for all small ε, again by construction, since it is an inferior reply against

q̄1
n which belongs to the interior of B∗

n(T ). Finally, if it belongs to S1
n(T 1

n) \ (T̂ 1
n ∪ T̄ 1

n) then

it is no better a reply against q∗m and an inferior reply to q̃0
m(ε) for all small ε, since it is

an inferior reply to q̄0
n by construction of An(T ). Thus the strategies in T are lexicographic

best replies to (q∗, q̃0(ε), q̃1(ε)) for all small ε.

Before proceeding to prove the converse, we use the above argument to show that the

intersection of C∗
n(T ) with the convex hull P 2

n of P 0
n is in fact the intersection F of P 0

n with

the affine space spanned by B∗
n(T ). Take a point q1

n in C∗
n(T )∩P 2. If it belongs to P 0

n , then

in fact it belongs to F by the definitions of B∗
n(T ) and T̂ 1

m. If it does not belong to P 0
n , then it

assigns a positive weight to some strategy s1
n ∈ T 1

n . The above argument applied when using

this q1
n shows that q∗m is a best reply to (q∗n, q̃0

n(ε), q̃1
n(ε)) and the strategies in Tn and S0

n are

best replies to q∗m. Observe now that q̃1
n(ε) is a convex combination of strategies in S0

n and

T 1
n . Therefore, for all small δ, ((1− δ − δ2)q∗n + δq̃0

n(ε) + δ2q̃1
n(ε), q∗m) is an equilibrium if ε is

small as well. But these points induce different outcomes because q̃1
n(ε) has a non-equilibrium

strategy, namely one in T 1
n , in its support, which is impossible. Thus, C∗

n(T ) ∩ P 2
n = F as

claimed.

Returning to the proof of this lemma, suppose (q∗, (p0, p1), π1) belongs to Q. Let q0
n =

(1− λ0
n)p0

n + λ0
nr

0
n and let q1

n = µ0
np̃

0
n + µ1

np
1
n + µ2

nr
2
n where (1− λ0

n)q∗n + λ0
nr0

n is a best reply

against (q∗, q0, q1); and r2
n, if µ2

n > 0, is a best reply against q∗n and a weakly better reply

against (q∗, q0, q1) than all the strategies in P 1
n . Let Q0

n be the face of P 0
n that contains

(1− λ0
n)q∗n + λ0

nr
0
n. Let Q1

n be the face of P 1
n that contains r2

n in its interior if µ2
n > 0. Let T 0

n

be the set of strategies tn in S0
n such that if tn enables a first information set hn ∈ H0

n then

the choices from there on prescribed by t0n coincide with the choices dictated by some vertex

of Q0
n or Q1

n that enables hn. Observe that each t0n ∈ T 0
n is optimal against (q∗, q0, q1). If

µ2
n > 0, let Ψ1

n be the face of Π1
n that contains π̄1

n(r2
n) in its interior; otherwise let Ψ1

n be the

empty set.
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We can now assume without loss of generality that the strategies in Q0
n and Q1

n are equally

good replies against (q∗m, q0
m, q1

m) and hence best replies. Indeed, if for i either 0 or 1, if the

strategies in Q1
n do not yield the same payoff against qi

m as those in Q0
n, modify qi

m as follows:

pick a point ř0
m in the face Q̃0

n of Q0
n containing q∗m in its interior such that the strategies in

Q0
n are equally good replies, the strategies in Q1

n do strictly better than the strategies in Q0
n

and at least as well as the other strategies in S1
n. There exists a unique νi

m ∈ [0, 1] such that

the strategies in Q0
n and Q1

n are now equally good replies against (1− νi
m)qi

m + νi
mři

m. Thus,

our assumption is without loss of generality.

Since the strategies in Q0
n and Q1

n are best replies. There remains to show that every

strategy in Sn(T 0
n ; Ψ1

n) is a best reply against (q∗m, q0
m, q1

m). Fix sn ∈ Sn(T 0
n ; Ψ1

n). To show

that it is a best reply it is sufficient to show that an information set hn that is enabled by sn

is enabled by some vertex of either Q0
n or Q1

n and that this vertex agrees with sn’s choice an

there. Suppose that this hn is in H∗
n and an ∈ A∗

n, or hn belongs to H0
n; then obviously some

strategy in Q0
n or Q1

n enables hn and chooses an, by the definition of T 0
n . If hn ∈ H∗

n and

an /∈ A∗
n or hn follows some information set in H∗

n by the choice of a non-equilibrium action,

then some strategy in Q1
n enables it and chooses this action, since otherwise sn enables a

terminal node that is excluded by all strategies in Q1
n, contradicting the assumption that

π̄1
n(sn) ∈ Ψ1

n. Thus sn is a best reply and (q∗, q0, q1) belongs to Q(T ). ¤

Lemma C.10. Q is a pseudomanifold of dimension d̂ ≡ d(P).

Proof. Each Q(T ) is a polyhedron of dimension d̂. By the previous lemma Q = ∪T∈TQ(T ).

Therefore, Q has dimension d̂. To show that Q is a pseudomanifold, we establish three

facts for each (q∗, (p0, p1), π1) that belongs to some Q(T ): (1) if (q∗, (p0, p1), π1) belongs to

the interior of Q(T ), then it does not belong to the interior of Q(R) for R 6= T ; (2) if

(q∗, (p0, p1), π1) is a generic point in a maximal proper face Q′ of Q(T ), then it does not

belong to Q(R) for any R 6= T if (p0, p1) ∈ ∂P, and it belongs to the boundary of Q(R) for

exactly one other R 6= T if (p0, p1) /∈ ∂P; moreover in the latter case it belongs to the interior

of a maximal proper face of this Q(R) as well; (3) given T, R ∈ T , there exists a finite chain

T = T (0), . . . , T (k) = R such that for each 0 ≤ j ≤ k− 1, Q(T (j))∩Q(T (j + 1)) is a subset

of a maximal proper face of each and has a nonempty interior in this face.

Fix T = (T 0, Ψ1) and x = (q∗, (p0, p1), π1) ∈ Q(T ). For each n, choose q0
n ≡ (1− λ0

n)p0
n +

λ0
nr

0
n in B∗

n(T ) and q1
n ≡ µ0

np̃0
n + µ1

np1
n + µ2

nr
1
n ∈ C∗

n(T ).

We start with (1). Suppose now that x belongs to the interior of Q(R) for some R. We

show that R = T . Since x belongs to the interior of Q(T ), we can assume that every strategy

in S0
m \ T 0

m is inferior to q1
n. Let sm be a strategy in S0

m \ T 0
m. Since sm is an inferior reply
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against q1
m compared to the strategies in T 0

n , by Lemma C.3 there exists an information set

hn ∈ H0
n that is enabled by sn where the action chosen by sn is suboptimal and different

from the action chosen by every tn ∈ T 0
n that enables hn. But the posterior belief over the

terminal nodes following hn computed from q1
m can be computed from π1

m. This implies that

for any q′m such that π̄1
m(q′m) = π1

m, sn is an inferior strategy. Therefore, (p1
m, π1

m) cannot

belong to Cm(R) unless R0
m ⊆ T 0

m. Moreover, if R0
m ( T 0

m, then it cannot belong to the

interior of Cm(R), since strategies in T 0
m \ R0

m are also optimal. Thus, if x belongs to the

interior of Q(R), R0
m = T 0

m for each m. If Ψ1
m is empty, this implies that Rm = Tm. Suppose

now that Ψ1
m is nonempty. Since x is in the interior we can assume that π̄1

m(p1
m) 6= π1

m and

that π̄n(r1
m) is in the interior of Ψ1

m. Observe that π̄1
n(r1

m) can be computed uniquely from p1
m

and π1
m by taking the line segment from π̄1

m(p1
m) through π1

m and computing the boundary

point of this line. This implies that if x belongs to the interior of Q(R), then Rm = (T 0
m, Ψ1

m).

Thus R = T .

We turn to point (2). Suppose now x belongs to the relative interior of a maximal proper

face of Q(T ) and that (p0, p1) belongs to ∂P . Then if it belongs to another Q(R) it cannot be

in the interior and must belong to the boundary. The arguments of the previous paragraph

apply to show that x does not belong to the interior of a maximal face of Q(R). Indeed,

it relied on strategies in S0
m \ T 0

m being inferior to q1
n, and q0

n (resp. q1
n) not belonging to

the boundary of Bn(T ) (resp. Cn(T )). Thus x must belong to a face of dimension at most

d̂ − 2. The set of such points in this maximal proper face of Q(T ) then has dimension at

most d̂− 2, i.e. it is nongeneric.

Suppose that x belongs to the relative interior of a maximal proper face of Q(T ) but

that (p0, p1) is in the interior in P. Then for exactly one n, just one of the following hold:

(2a) q∗n belongs to the boundary of A∗
n(T ); (2b) p0

n belongs to the boundary of Bn(T );

(2c) (p1
n, π1

n) belongs to the boundary of Cn(T ). We start with (2c). By the properties we

proved for Cn(T ) in Lemma C.8, and since (p0, p1) /∈ ∂P, either property (ii) or property

(iii) of that lemma holds. Under property (ii) x belongs to the boundary of Q(R) where

R = ((R0
m, Φ1

m), (Tn, Ψ
1
n)) is defined as follows. If the strategy ri

m identified there belongs

to S0
m, then R0

m is the vertex set of the face spanned by ri
m and T 0

m, while Φ1
m = Ψ1

n; if the

strategy ri
m belongs to S1

n(T 0
n ; Ψ1

n), then R0
m = T 0

m and Φ1
m is a face of Π1

m that has Ψ1
m as

a maximal face with π1
m(r1

m) ∈ Φ1
m \Ψ1

m. Under property (iii) x belongs to the boundary of

Q(R) where R = ((T 0
n , Φ1

n), (T 0
m, Ψ1

m)) where Φ1
n is the maximal proper face of Ψ1

n identified

there.

Suppose x satisfies (2b). Then by the properties we proved for Bn(T ) in Lemma C.7,

either property (ii) or property (iii) of that lemma holds. Under property (ii) let R̃1
m be the



40 SRIHARI GOVINDAN AND ROBERT WILSON

set of strategies in T̃ 1
m that are now best replies against q0

n. Let Φ̃1
m be the smallest face of

Π1
m that contains Ψ1

m and the vectors π1
m(r̃1

m) for r̃1
m ∈ R̃1

m. Then the strategies in T 0
m and

S1
m(Φ1

m) are equally good replies against q0
n. Moreover by the genericity of x, if one of these

strategies is a best reply against a point in B∗
n(T ) then all these points are best replies as

well. For each face Φ1
m of Φ̃1

m that has Ψ1
m a maximal proper face, choose a strategy rm(Φ1

m)

that maps to a vertex of Φ1
m that is not contained in Ψ1

m. The set of points in B∗
n(T ) against

which the strategies in R̃m are as good replies as Tm has dimension d∗n(T )− 1. However, the

set of points in C∗
n(T ) where two or more of these strategies rm(Φ1

m) are also best replies

has dimension d(Pn) − d(T 0
m) − d(Ψ1

m) − 3 or less. Therefore, for R and R′ of the form

((T 0
n , Ψ1

n), (T 0
m, Φ1

m)) the set of (p1
n, π1

n) that lies in the intersection Cn(T ) ∩ Cn(R) ∩ Cn(R′)

is at most d0
n + d1

n + dn(Ψ1
n)− d∗n(T )− 1 or less. This implies that generic (p1

n, π1
n) in Cn(T )

belongs to at most one of these sets. Moreover, if x belongs to Q(R), then it belongs to

the boundary of Q(R): indeed the point φ1
m in Φ1

m such that π1
m is a convex combination of

π̄1
m(p1

m) and φ1
m is uniquely determined, as we argued above; since this point belongs to Ψ1

m,

which is a face of Φ1
m, x indeed belongs to the boundary of Q(R) if it belongs to Q(R). To

finish the proof of this case, we now show that x belongs to at least one Q(R). Take an r̃1
m

that yields the highest payoff against q1
n among the strategies in R̃1

m. If this payoff is higher

than the payoff to the strategies in T 0
m, pick a point q̄0

n in the interior of B∗
n(T ) and replace

q1
n with q̃1

n(ε) ≡ (1−ε)q1
n +εq̄0

n where ε is the unique number where the strategies T 0
m and r̃1

m

are equally good replies; then x belongs to some Q(R) that has π1
m(r̃1

m) as an extra vertex.

If the payoff to r̃1
m is lower, take a point q̄0

n in P 0
n against which the strategies in T 0

m are

equally good and worse than the strategies in R̃1
m and repeat the argument to show that x

belongs to Q(R).

Finally, suppose that x satisfies (2a). Let A′
n be a maximal proper face of An(T ) that

contains q∗n in its interior. Let Ř1
m be the set of strategies řm in S1

m(T 0
m) \ (T 1

m ∪ T̂ 1
m ∪ T̄ 1

m))

that are best replies against all the points in A′
n. Observe that Ř1

m is nonempty if q∗n belongs

to the interior of Pn(T̃ 0
n). Indeed, in this case, the interior of A′

n which is a face of An(T ) is

contained in the interior of Pn(T̃ 0
n), which implies that some strategy in S1

m is now optimal

against every point in this face. Let R0
n be the set of subsets R0

n of T 0
n such Pn(R0

n) is a

maximal proper face of Pn(T 0
n) and Pn(R0

n) ∩Q∗
n = A′

n. Observe that R0
n is nonempty if q∗n

belongs to the boundary of Pn(T̃ 0
n).

Let Φ̌1
m be the smallest face of Π1

m that contains Ψ1
m and the vectors π1

m(ř1
m) for ř1

m ∈
Ř1

m. For each face Φ1
m of Φ̌1

m that has Ψ1
m as a maximal proper face, choose a strategy

ř1
m(Φ1

m) that maps to a vertex of Φ1
m that is not contained in Ψ1

m. Take R and R′ of
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the form ((T 0
n , Ψ1

n), (T 0
m, Φ1

m)). Since A′
n is a face of An(T ), d̃∗n(R) = d̃∗n(R′) = d̃∗n(T ) − 1.

Since the strategies in Ř1
m are inferior replies to points in the interior of An(T ), B∗

n(R)

if nonempty has dimension d∗n(T ) − 1. Therefore, if Bn(R) 6= Bn(R′), their intersection

with Bn(T ) has codimension 1 in Bn(T ) and x cannot belong to two of these sets at once.

On the other hand, if Bn(R) = Bn(R′) then an argument similar to that in the previous

paragraph shows that generic (p1
n, π

1
n) ∈ Cn(T ) can belong to at most one of these sets,

Cn(R) and Cn(R′). Hence a generic x belongs to at most one of these sets. Likewise, for R

of the form ((R0
n, Ψ

1
n), (T 0

m, Ψ1
m)) with R0

n ∈ R0
n and R′ of the form ((R′

n
0, Ψ1

n), (T 0
m, Ψ1

m)) or

((T 0
n , Ψ1

n), (T 0
m, Φ1

m)), the intersection of Bn(T ) with Bn(R) and Bn(R′) has codimension at

least one. Thus x belongs to at most one set Q(R). To finish the proof of this part, we show

that it belongs to at least one such set.

Let ř1
m(Φ1

m) be a strategy that is a lexicographic best reply to (q0
n, q

1
n) among the strategies

in this class. If ř1
m(Φ1

m) is a lexicographic (weakly) better reply against (q0
n, q

1
n) (or it is a

worse reply and q∗n belongs to the interior of Pn(T̃ 0
n)) we choose a point q̄0

n in the interior of

Pn(T̃ 0
n) against which the strategy ř1

m(Φ1
m) is at least as good as the other points in this class

and inferior (resp. superior) to strategies in T 0
m. The strategies in T 0

m and Sm(T 0
m; Φ1

m) are

now equally good replies against some average of q0
n and q̄0

n, as well as some average of q1
n

and q̄0
n. The point x then belongs to ((T 0

m, Φ1
m), (T 0

n , Ψ1
n)). If q∗n belongs to the boundary of

Pn(T̃ 0
n), and ř1

m(Φ1
m) is an inferior reply, then Ř0

n is nonempty. There exists R0
n such that q0

n

is a convex combination of a point in Pn(Ť 0
n) and p0

n. Then x belongs to ((Ť 0
n , Ψ1

n), (T 0
m, Ψ1

m)).

This concludes the proof of (2).

We turn now to (3). Given Q(T ) and Q(R) for T = (T 0, Ψ0) 6= R = (R0, Φ1), we will first

construct a sequence T = T (1), . . . , T (k) = T̃ where T̃ = ((T̃ 0
n , ∅), (T̃ 0

m, ∅)). And, likewise

one from R to R̃. Then we will show how to construct a sequence from T̃ to R̃.

In case T̃ 0
n 6= T 0

n for some n, let T = T (0), . . . , T (k) be a sequence where for each j > 0,

T (j) = ((T 0
n(j), Ψ1

n), (T 0
m(j), Ψ1

n)) with Pn(T 0
n(j))×Pm(T 0

m(j)) being a maximal proper face of

Pn(T 0
n(j−1))×Pm(T 0

m(j−1)), and Tn(k) = T̃ 0
n for each n. This sequence generates a sequence

of polyhedra Q(T ) = Q(T (0)), . . . ,Q(T (k)) where for each j > 0, the intersection of Q(T (j))

with Q(T (j−1)) is contained in a maximal proper face of each and has a nonempty interior.

After this operation we have Q(T̃ (k)), where T̃ (k) = ((T̃ 0
n , Ψ1

n), (T̃ 0
m, Ψ1

m)). In case Ψ1
n

is nonempty for some n, let Ψ1 = (Ψ1
n(0), Ψ1

m(0)), . . . , (Ψ1
n(l), Ψ1

m(l)) = (∅, ∅) be a sequence

such that for each 1 6 j ≤ l, Ψ1
m(j)×Ψ1

m(j) is a maximal proper face of Ψ1
n(j−1)×Ψ1

m(j−1),

and Ψ1(l) = ∅. This way we can connect Q(T̃ (k)) with Q(T̃ ) where T̃ = ((T̃ 0
n , ∅), (T̃ 0

m, ∅)).
Now we show how to connect T̃ with R̃ for two sets T, R in T . Because Q∗

n is connected for
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each n, there exists a sequence T̃ 0 = (S0
n(0), S0

m(0)), . . . , (S0
n(l), S0

m(l)) = R̃0
n where for each

1 6 j 6 l, either Pn(S0
n(j)) × Pn(S0

m(j)) is either a maximal proper face of Pn(S0
n(j + 1))

or vice versa and for each n, Q∗
n intersects the interior of the set Pn(S0

n(j)). This generates

a sequence Q0, . . .Qj, where Qj = ((S0
n(j), ∅), (S0

m(j), ∅)). Thus we have constructed a

sequence of sets in T that connect T and R. ¤

This concludes the proof of the first statement in the theorem. Now we prove the second

part.

Lemma C.11. ψ : (Q, ∂Q) → (P, ∂P) is essential iff Q∗ is stable.

Proof. Let Y = [0, 1] × P . For each 0 < ε 6 1, let Yε = [0, ε] × P and let ∂Yε be the

boundary of Yε. Each (ε, p) ∈ Y defines a strategic game G(ε, p) where the strategy set is P

but where the payoff from an enabling strategy profile q is the payoff in G from the profile

(1 − ε)q + εp. If q is an equilibrium of G(ε, p), we say that (1 − ε)q + εp is a perturbed

equilibrium of G(ε, p). Let E be the closure of the set of (ε, p, q) such that (ε, p) ∈ Y1 \ ∂Y1

and q is a perturbed equilibrium of G(ε, p). Let θ be the projection map from E . For each

subset E of E and each 0 < ε, let (Eε, ∂Eε) be E ∩ θ−1(Pε, ∂Pε).

In [9] we show that there exists 0 < ε̄ 6 1 and a finite number of subsets E1, . . . , EK of E
such that for each 0 < ε 6 ε̄: (i) (Ek

ε , ∂Ek
ε ) is a pseudomanifold (in fact a homology manifold)

of dimension d(P ) + 1 for each k; (ii) Ek
ε ∩ Ej

ε ⊂ ∂φ−1(∂P1) for k 6= j; (iii) ∪kE
k
ε = Eε.

In [6] we show that there exists a neighborhood of Σ∗ and an ε > 0 such that the set

of ε-perfect equilibria in this neighborhood is connected. The image of this set of ε-perfect

equilibria under ρ is therefore connected. Thus there exists some k such that Ek
0 = { 0 }×Q∗.

Q∗ is stable iff the projection θ from Ek to Yε̄ is essential (Mertens [19]). For simplicity in

notation we refer to this Ek as simply E.

It is now sufficient to prove that ψ is essential iff the projection θ from E is essential. For

each n, P̃n ≡ [0, 1] × Pn and define χn : P̃n → Pn by χn(λn, p0
n, p1

n) = (1 − λn)p0
n + λnp

1
n.

Then we have that ((P̃n, ∂P̃n), (Pn, ∂Pn), χn) is a ball-bundle. Let χ be the product map

χ1× χ2; then ((P̃ , ∂P̃ ), (P, ∂P ), χ) is a ball-bundle too. Let Ŷε = [0, ε]× P̃ . Then χ induces

a map hY : Ŷ1 → Y1 by h(ε, λ, p0, p1) = (ε, χ(λ, p0, p1)). Now ((Ŷε, ∂Ŷε), (Yε, ∂Yε), hY ) is a

ball-bundle. Let Ẽ be the set of all ((ε, λ, p0, p1), q) ∈ Ŷ1 × P such that hE(ε, λ, p0, p1, q) ≡
(ε, f(λ, p0, p1), q) ∈ E. Then also ((Ẽε, ∂Ẽε), (Eε, ∂Eε), hE) is a ball-bundle. Moreover,

letting θ̃ be the projection from Ẽ to P, we have that hY ◦ θ̃ = θ ◦ hE. Therefore, by the

Thom Isomorphism Theorem, θ is essential iff θ̃ is; cf. [20, Appendix IV.3].
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Let Ê be the closure of the set of (ε, λ, p0, p1, q, π1(q)) such that (ε, λ, p0, p1, q) ∈ Ẽ and

λ 6= 0. By the strong excision property, the natural projection φ̂ from Ê to Ẽ induces

an isomorphism of their cohomology groups. Let θ̂ be the projection from Ê to Ŷε. Then

θ̂ = θ̃ ◦ φ̂. Therefore, θ̃ is essential iff θ̂ is.

Let η : Ê → R3
+ be the projection map η(ε, λ, (p0, p1), q, π1) = (ε, λ). Let D = η(Ê).

By the generic local triviality theorem, there exists a partition of D into a finite number

of connected subsets D0
1, . . . , D

0
l , and for each Di a semi-algebraic fibre pair (Fi, ∂Fi), a

homeomorphism hi : D0
i × (Fi, ∂Fi) → (η−1(D0

i ), η
−1(D0

i ) ∩ ∂Ê) such that η ◦ hi is the

projection from D0
i × Fi to D0

i . There now exists an i, say 1, such that the closure D1 of a

subset of D0
i is homeomorphic to a 3-simplex and contains [0, ε̃]× { 0 } for some ε̃ < ε̄.

Let (Ŷ (D1), ∂Ŷ (D1)) ≡ (D1, ∂D1) × (P, ∂P) and let Ê(D1) be the closure of the inverse

image of D1 × F1 under h1. Let θ̂(D1) : (Ê(D1), ∂Ê(D1)) → (Ŷ (D1), ∂Ŷ (D1)) be the

projection. We claim that (Ê(D1), ∂Ê(D1)) is a pseudomanifold. Since Ê is a pseudo-

manifold, this claim is proved if we show that Ê(D1) \ ∂Ê(D1) is path-connected. There

exist 0 < ε̂ < ε̃ and integers rn > 1 for each n such that (ε, λ) ∈ D1 if 0 < ε < ε̂ and

0 ≤ λn ≤ εrn−1. Now given two points x(0) and x(1) in Êε̂(D1) \ ∂Êε̂(D1), connect them

by a curve x(t) = (ε(t), λ(t), p0(t), p1(t), q(t), π1(q(t))) in Êε̄ \ ∂Êε̄ as t goes from 0 to 1. For

each t, express q(t) as ε(t))(λ(t)p0(t) + (1− λ(t))p1(t)) + (1− ε(t))r(t) where r(t) is a best

reply to q(t). For each t we can now find a point q∗(t) ∈ Q∗ such that r(t) is a best reply

against q∗(t). Choose a positive ε such that ε + εrn < ε̂. For each n, modify xn(t) to the

vector

x̃n(t) = (ε + εrnε(t), λ̃(t), p̃0(t), p1(t), q̃(t), π1(t))

where

λ̃n(t) =
εrnε(t)

ε + εrn
λn(t),

p̃0
n(t) =

εq∗(t) + εrnε(t)(1− λ(t))p0(t)

ε + εrnε(t)(1− λ(t))
,

q̃n(t) = (1− εrn)q∗(t) + εrn(1− ε(t))r(t) + εrnε(t)((1− λ(t))p0(t) + λ(t)p1(t)).

Then x̃(t) belongs to Ê(D1) \ ∂Ê(D1) for all t. Moreover, for t = 0, 1, x(t) and x̃(t) can now

be connected by a path x̂(t; s) defined as follows. For s ∈ [0, 1], let kn(s) = min(1, 2s)rn and

then:

x̂n(t; s) = ((2s− 1)+ε + εkn(s)ε(t), λ̂(t; s), p0(t; s), p1(t), q̂(t; s), π1(t))
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where

λ̂n(t) =
εkn(s)ε(t)λn(t)

(2s− 1)+ε + εkn(s)ε(t)
,

p̃0
n(t; s) =

(2s− 1)+εq∗n(t) + εrnε(t)(1− λn(t))p0
n(t)

(2s− 1)+ε + εkn(s)ε(t)(1− λn(t))
,

q̃n(t; s) = (1− εkn(s))q∗n(t) + εkn(s)(1− ε(t))r(t) + εkn(s)ε(t)((1− λn(t))p0
n(t) + λn(t)p1(t)).

Thus Ê(D1)\∂Ê(D1) is connected and hence a pseudomanifold of dimension d(P)+3. Ŷ (D1)

is a full-dimensional subset of Yε̄. Therefore θ̂ is essential iff θ̂(D1) is essential.

Since (Ê(D1), ∂Ê(D1)) is a pseudomanifold, (F1, ∂F1) is a pseudomanifold of dimension

d(P). Moreover, for each (ε, λ) ∈ D0
1, letting (Êε,λ, ∂Êε,λ) ≡ h−1

1 ({ ε, λ }× (F1, ∂F1)) we have

that θ̂ is essential iff θ̂ε,λ, the projection map (Êε,λ, ∂Êε,λ) → (P, ∂P ), is essential.

Let L be the set of (ε, λ) ∈ D1 such that λn = εr for some r > rn for each n. Let Ê(L)

be the closure of the inverse image of L \ { (0, 0) } under h1. Let ∂Ê(L) be the inverse

image of ∂P under the projection map θ(L) from Ê(L). For each (ε, λ) ∈ L, (Eε,λ, ∂Eε,λ) is

(θ(L))−1({ (ε, λ) } × (P, ∂P)). Our next objective is to show that (Q, ∂Q) equals the set of

(q∗, (p0, p1), π1) such that (0, 0, (p0, p1), q∗, π1) belongs to E0,0(L). Given (0, 0, (p0, p1), q∗, π1)

in Ê(L) there exists a sequence (ε(k), λ(k), (p0, p1)(k), q(k), π1(k)) in Ê(L) \E0,0 converging

to it. For each n and k, we can express qn(k) as (1 − ε(k))((1 − µ1
n)q0

n(k) + µ1
nr

1
n(k)) +

ε(k)(λ(k)p0
n(k) + (1 − λ(k))p1

n(k)), where µ1
n and λ(k) converge to zero, q0

n(k) belongs to

P 0
n and converges to q∗n, and r1

n(k) belongs to P 1
n . Also q0

n(k) and r1
n(k) if µ1

n > 0 are best

replies to q(k) for all k. By going to a subsequence, the faces to which q0
n(k) and r0

n(k)

belong are constant for all k. The sequence generates for each n an LPS Λn = (q̄0
n, . . . , q̄

l
n)

where q̄0
n = q∗n. As in the proof of Theorem 5.1, there exists a level lin for each i = 0, 1 that is

expressible as a convex combination of p0
n and another strategy. Since λ(k) converges to zero,

l0n < l1n. As in the proof of Theorem 5.1, we can prove that q̄l
n belongs to Q̄∗

n for each l < l0n

and if we express q̄
l0n
n = ν0

np
0
n + (1 − ν0

n)r0
n, then the strategies q̄l

n for l < l0n and r0
n if ν0 < 1

are lexicographic best replies against Λm. Likewise, if we express q̄
l1n
n as ν̄0

np̃
0
n + ν̄1

np1
n + ν̄2

nr
2
n,

then the strategy r2
n if ν̄2

n > 0 is a lexicographic best reply against Λm. As in the proof

of Theorem 5.1, Section 5.6, we can now write down an LPS (q∗, q̄0(ε), q̄1(ε)) to show that

(q∗, (p0, p1), π1) belongs to Q.

Given (q∗, (p0, p1), π1) in Q, it belongs to Q(T ) for some T . There exist q0
n = (1−λ0

n)p0
n +

λ0
nr

0
n and q1

n = µ0
np̃

0
n +µ1

np
1
n +µ2

nr
2
n such that the strategies in Tm are best replies against the

LPS (q∗, q0
n, q

1
n). For all small ε, choose α(ε) such that εrµ1 = (εrµ1 + εrµ0 + α(ε)(1− λ0

n)p0
n)

r
,
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where r satisfies the property in the first line of the previous paragraph. Then for all small

ε, (ε, λ(ε), (p0, p1)(ε), q(ε)) belongs to Ê(L), where:

λ(ε) =
εrµ1

εrµ1 + εrµ0 + α(ε)(1− λ0
n)

,

and (p0, p1)(ε) = (p0(ε), p1) with for each n,

p0
n(ε) =

εrµ0p̃
0
n + α(ε)(1− λ0

n)p0
n

εrµ0 + α(ε)

and q̂(ε) = (1− α(ε)− εr)q∗ + α(ε)q0 + εrq1.

For each (ε, λ), (Eε,λ, ∂Eε,λ) is a pseudomanifold. Indeed for (ε, λ) 6= (0, 0) this follows

from the fact that this pair is homeomorphic to (F1, ∂F1), which is a pseudomanifold; for

(0, 0), this follows from the fact that (E0,0, ∂E0,0) is homeomorphic to (Q, ∂Q). The inclusion

map (Eε,λ, ∂Eε,λ) induces an isomorphism of the d(P)-th cohomology groups. Thus θ̂0,0 is

essential iff θ̂ε,λ is essential for some (and then all) (ε, λ) ∈ L. The projection map θ̂0,0 is

just the map ψ. Hence Q∗ is stable iff ψ is essential. ¤

In case S1
n is empty, the construction is modified as follows. We can omit the sets Cn(T )

and Bm(T ) from the description of Q(T ). In the last lemma above, the vector λ is now just

a number, one for player m. The simplex D constructed there is 2-dimensional and contains

a curve L of the form λ = εr. The rest of the proof is essentially the same.

This concludes the proof of the Theorem. ¤

Appendix D. The Genericity Assumption

The conclusions of this paper necessarily hold only when, fixing the game tree, the payoffs

lie in a generic set. Here we outline the nature of the genericity that is invoked. First,

we require that the game have finitely equilibrium outcomes: in [4] we show that outside a

lower-dimensional set every game has finitely many outcomes. Second, the constructions in

Appendix C rely on certain polyhedra being in general position. Each of these polyhedra—

there are finitely many of them—is a set of enabling strategies for a player n against which,

in a certain class of strategies for player m, a subclass is optimal. Since these are defined

by linear equations and inequalities in the payoffs of player m, the set of games where the

arguments fail is a lower-dimensional set. Third, Lemma C.11 requires a characterization of

stable sets that in [9] we show holds for all games outside a lower-dimensional set.
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