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Abstract. A refinement of the set of Nash equilibria that satisfies two assumptions is
shown to select a subset that is stable in the sense defined by Kohlberg and Mertens. One
assumption requires that a selected set is invariant to adjoining redundant strategies and the
other is a strong version of backward induction. Backward induction is interpreted as the
requirement that each player’s strategy is sequentially rational and conditionally admissible
at every information set in an extensive-form game with perfect recall, implemented here
by requiring that the equilibrium is quasi-perfect. The strong version requires ‘truly’ quasi-
perfect in that each strategy perturbation refines the selection to a quasi-perfect equilibrium
in the set. An exact characterization of stable sets is provided for two-player games.

1. Introduction

This article studies refinements of the equilibria of a non-cooperative game. As in other

contributions to this subject, the aim is to sharpen Nash’s [20, 21] original definition by

imposing additional decision-theoretic criteria. We adopt the standard axiom of invariance

to establish a connection between games in strategic (or ‘normal’) form and those in extensive

form (with perfect recall, which we assume throughout). Our contribution is to show that

a set selected by a refinement satisfying a strong form of the backward-induction criterion

for an extensive-form game must be stable, as defined by Kohlberg and Mertens [12] for the

strategic form of the game but without their insistence on a minimal stable subset.

Thus in §3 we define formally the two criteria called Invariance and Strong Backward

Induction, and then in §5 we prove:

Theorem. If a refinement of the Nash equilibria satisfies Invariance and Strong Backward

Induction then each selected subset is stable.

The main concepts in the theorem are defined in §3. Briefly:

Invariance. Invariance requires that a refinement is immune to treating a mixed strategy

as an additional pure strategy. Its role is to exclude some kinds of presentation effects.

Its chief implication is that a refinement depends only on the reduced form of the game,

i.e. only on the strategically equivalent game obtained by deleting redundant strategies

from the strategic form.
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Backward Induction. For a game in extensive form, the criterion of backward induc-

tion or ‘sequential rationality’ is usually implemented by requiring that a selected subset

includes a sequential equilibrium (Kreps and Wilson [13]). Here the criterion is strength-

ened by requiring conditional admissibility, i.e. by excluding a strategy that is weakly

dominated in the continuation from some information set. This is implemented by re-

quiring that the equilibrium is quasi-perfect (van Damme [6]).1 Using quasi-perfection to

represent backward induction brings the advantage that the generally accepted axioms

of admissibility and conditional admissibility are included automatically.

Strong Backward Induction. Sequential equilibrium outcomes can be sustained by many

different conditional probability systems (‘beliefs’ in [13]), and similarly, different quasi-

perfect equilibria result from considering different perturbations of players’ strategies.

Strong Backward Induction (SBI) requires that each perturbation of players’ strategies

refines the selection further by identifying a quasi-perfect equilibrium within the selected

subset.

Stability. A subset of the Nash equilibria is stable if each nearby game, obtained by

perturbing each player’s strategies by a ‘tremble,’ has a nearby equilibrium. This is the

concept of stability defined by Kohlberg and Mertens [12] but without their insistence

on selecting a minimal stable subset.

SBI strengthens the criterion of ‘truly perfect’ (perfect with respect to all possible trem-

bles) that originally motivated Kohlberg and Mertens’ [12] definition of a stable set. In

effect, SBI requires that a selected subset includes all the sequential equilibria in admissible

strategies sustained by beliefs generated by perturbations of the game. Invariance and SBI

together imply that a refinement selects a subset that includes a sequential equilibrium for

every extensive form having the same reduced strategic form obtained by deleting redundant

strategies (§2.3 provides an explicit example). Due to Invariance, this implication is stronger

than the property of a proper equilibrium of a strategic form; viz., a proper equilibrium in-

duces a sequential equilibrium in each extensive form with the same (non-reduced) strategic

form. In general a stable subset might not contain a sequential equilibrium [12, example in

Figure 11], so the subclass of stable subsets allowed by the theorem represents a refinement

of stability.

For readers who are not familiar with the early literature on refinements from the 1970-

80s, §2 reviews informally the main antecedents of this article and presents some motivating

examples. For a survey and critical examination of equilibrium refinements see Hillas and

1A quasi-perfect equilibrium differs from a perfect equilibrium (Selten [23]) of the extensive form of a
game by excluding a player’s anticipation of his own trembles. We slightly modify van Damme’s definition
of an ε-quasi-perfect equilibrium.
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Kohlberg [11]. After the formulation in §3, stability is characterized and the theorem is

proved in §4 for a game with two players, which is simpler than the general proof in §5.

Concluding remarks are in §6. Appendices provide direct proofs for two cases of special

interest.

2. Background and Motivation

The central concept in the study of non-cooperative games is the definition of equilibrium

proposed by Nash [20, 21]. Nash interprets a player’s strategy as a ‘mixed’ strategy, i.e. a

randomization over pure strategies, each of which is a complete plan specifying the action

to be taken in each contingency that might arise in the course of the game. Thus a game is

specified by the strategic form that assigns to the players their utility payoffs from each profile

of their pure strategies, and by extension, expected payoffs to each profile of their (mixed)

strategies. Nash’s definition of an equilibrium profile of strategies requires that each player’s

strategy is an optimal reply to the other players’ strategies. Although Nash’s definition can

be applied to a game in the extensive form that describes explicitly the evolution of play, it

depends only on the strategic form derived from the extensive form.

Selten [22, 23] initiated two lines of research aimed at refining Nash’s definition of equilib-

rium. The first line invokes directly various decision-theoretic criteria that are stronger than

Nash invokes. For example, admissibility and invariance are relevant criteria for a game in

strategic form, and subgame perfection, sequential rationality (as in sequential equilibria),

and quasi-perfection are relevant for a game in extensive form. The second line pursues

a general method based on examining perturbations of the game. Its purpose is to obtain

refinements that satisfy many decision-theoretic criteria simultaneously. For example, requir-

ing that an equilibrium is affected slightly by perturbations excludes inadmissible equilibria,

i.e. that use weakly dominated pure strategies. These two lines have basically the same

goal although they use different methods. That goal is to characterize equilibria that are

‘self-enforcing’ according to a higher standard than Nash’s definition requires. Perturbation

methods have been remarkably successful, but the technique is often complicated, and for

applications it often suffices to impose decision-theoretic criteria directly.

Both lines strengthen Nash’s definition so as to exclude equilibria that are considered

implausible. For example, in the context of the strategic form one wants to exclude an

equilibrium that uses a weakly dominated pure strategy, or that depends on the existence

of a pure strategy that is not an optimal reply at the equilibrium. In the context of the

extensive form, one wants to exclude an equilibrium that is ‘not credible’ because it relies

on a player’s commitment to a strategy—when in fact no ability to commit is represented
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Figure 1. A game with an equilibrium that is not credible if C cannot commit
to her strategy a, d.

explicitly in the extensive form. For instance, consider the game in Figure 1 in which player R

(Row) chooses between T (top) and B (bottom) and then C (Col) responds. The equilibrium

(T ; a, d) is considered not credible because it relies on C’s threat to respond to B with d,

whereas in the actual event C prefers c to d.

2.1. Refinements Based on Specific Criteria. Selten [22] began the first line of research.

He argued that extensive-form considerations enable a selection among the Nash equilibria.

He proposed selecting from among the equilibria one that induces an equilibrium in each

subgame of the extensive form, i.e. one that is subgame-perfect. Subgame-perfection requires

that each player’s strategy is consistent with the procedure of backward induction used in the

analysis of a decision tree with a single decision maker. Kreps and Wilson’s [13] definition

of sequential equilibrium extends this approach to games with imperfect information. They

require that the continuation from each contingency (a player’s information set) is optimal

with respect to a conditional probability system (for assessing the probabilities of prior

histories) that is consistent with the structure of the game and other players’ strategies. Van

Damme’s [6] definition of quasi-perfect equilibrium imposes further restrictions described in

§2.2.

The main deficiency of these refinements is that they depend sensitively on which extensive

form is used, i.e. they are plagued with presentation effects. For instance, in Figure 2 in the

top presentation there is one sequential equilibrium (r, r′; b) and others in which R chooses

`, `′. But in the bottom presentation subgame-perfection yields only the outcome (r, r′; b) in

the subgame in strategic form. Some additional criterion like Invariance is needed to ensure

that the refinement does not distinguish among strategically equivalent games. And even
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Figure 2. A game with multiple sequential equilibrium outcomes in the top
presentation, and only one in the bottom presentation (Hillas [10]).

then deficiencies remain; e.g., a sequential equilibrium can use an inadmissible strategy, as

in Figure 4 below.

Typical of other work in this vein is Cho and Kreps’ [5] Intuitive Criterion for selecting

among the sequential equilibria of signaling games. They require that there cannot be some

type of the sender that surely gains from deviating were the receiver to respond with a

strategy that is optimal based on a belief that assigns zero probability to those types of

the sender that cannot gain from the deviation. That is, an equilibrium fails the Intuitive

Criterion if the receiver’s belief fails to recognize that the sender’s deviation is a credible

signal about his type. For example, in Figure 3 the sequential equilibria with the outcome

(r, r′; b) are rejected because R would gain by choosing `′ in the bottom contingency if C

were to choose b′, which is optimal for C if she recognizes the deviation as a credible signal

that the bottom contingency has occurred—and indeed credibility is implied by the fact that

in the top contingency R cannot gain by deviating to `.

Stability essentially implies the Intuitive Criterion and its extensions by Banks and So-

bel [1]. In particular, Kohlberg and Mertens [12, Proposition 6] prove that a stable set S

contains a stable set of the game obtained by deleting strategies that are inferior responses

at all equilibria in S.
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Figure 3. A signaling game with two sequential equilibrium outcomes, one
of which is rejected by the Intuitive Criterion

2.2. Refinements Based on Perturbations. Selten [23] also opened the second line of

research. He proposed selecting an equilibrium that is the limit of equilibria of perturbed

games. The advantage of this computational method is that it assures that various decision-

theoretic criteria are satisfied. Applied to the strategic form it assures admissibility, and

applied to (the agent strategic form of) the extensive form it yields a sequential equilibrium.

Selten defines a perfect equilibrium of the strategic form as the limit σ = limε↓0 σε of a

sequence of profiles of completely mixed strategies for which σε
n(s) 6 ε if the pure strategy

s is in an inferior reply for player n against σε. Myerson [19] defines a proper equilibrium

analogously except that if s is inferior to s′ then σε
n(s) 6 εσε

n(s′). An advantage of a proper

equilibrium of the strategic form is that it induces a quasi-perfect and hence sequential

equilibrium in every extensive form with that strategic form [6, Theorem 1],[12, Proposition

0].

Selten shows that an equivalent definition of a perfect equilibrium is that each player’s

strategy is an optimal reply to each profile of completely mixed strategies of other players

in a sequence converging to their equilibrium profile. For a game in extensive form, van

Damme’s [6] definition of a quasi-perfect equilibrium is similar: each player uses only actions

at an information set that are part of an optimal continuation in reply to perturbations of

other players’ strategies converging to their equilibrium strategies. This ensures admissibility

of continuation strategies in each contingency, but importantly, while taking account of small

trembles by other players, the player ignores his own trembles both currently and also later

in the game. Figure 4 shows van Damme’s example in which both (T, a; c) and (B, a; c) are

sequential equilibria,2 but the second is not quasi-perfect—as is evident from the fact that R’s

2In fact each is perfect in the strategic form with three agents representing the two players.
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Figure 4. A game with multiple sequential equilibria but only (T, a; c) is
quasi-perfect.

strategy (T, a) weakly dominates (B, a), which is therefore inadmissible in the strategic form.

Van Damme [6] shows that a proper equilibrium induces a quasi-perfect equilibrium, and

hence a sequential equilibrium, in every extensive form with that strategic form. A partial

converse is that a quasi-perfect equilibrium induces a perfect equilibrium of the strategic

form.

Subsequent development of refinements based on perturbations was influenced greatly by

the work of Kohlberg and Mertens [12] (KM hereafter). They envisioned characterizing an

ideal refinement by decision-theoretic criteria adopted as axioms. To identify what the ideal

refinement would be, they examined several that satisfy most of the criteria they considered.

KM’s analysis relies on a fundamental mathematical fact that we explain below using

Figure 5. KM show that the graph of the equilibrium correspondence is homeomorphic to

the (one point compactification of the) space of games obtained by varying players’ payoffs,

i.e. the graph is a deformed copy of the space of games. This ‘structure theorem’ is much

more specific than the usual weak characterization of the equilibrium correspondence as

upper-semi-continuous. The structure theorem is illustrated schematically in the figure as

though the spaces of games and strategy profiles are each one-dimensional. Equilibrium

components of game G, shown as vertical segments of the graph, are intrinsic to the study of

refinements because (a) games in extensive form are nongeneric in the space of games, and

(b) for an extensive-form game whose payoffs are generic in the subspace of games with the

same game tree, the outcome of a sequential equilibrium is obtained by all equilibria in the

same component (Kreps and Wilson [13], Govindan and Wilson [8]), i.e. they agree along

the equilibrium path.



8 SRIHARI GOVINDAN AND ROBERT WILSON

Eq. 1

Eq. 2

Eq. Component 3

Eq. Component 4

Space of GamesGame G

Space of Strategies
Graph of Equilibria over the Space of Games

Unstable

Stable

Perturbed Games

Figure 5. Schematic diagram of the graph of equilibria over the space of
games obtained by varying payoffs.

KM’s basic conclusion is that a refinement should select a subset of equilibria that is

‘stable’ against all perturbations of the strategic form of the game in a sufficiently rich class.

To avoid confusions of terminology, below we use ‘robust’ rather than ‘stable,’ or say that

the subset ‘survives perturbations’ in the sense that every perturbed game nearby has an

equilibrium nearby. Their conclusion depends on several preliminary considerations.

(1) A robust subset exists. The homeomorphism implies that every game has a compo-

nent of its equilibria that survives all payoff perturbations in the sense that every

nearby game has a nearby equilibrium. In the figure, the isolated equilibria #1 and

#2 and the component #4 are robust in this sense. Not shown is the further impor-

tant property that some robust subset satisfies Invariance, i.e. if game G is enlarged

by treating some mixed strategy as a pure strategy then the strategically equivalent

subset in the enlarged game is also robust.3

(2) A refinement should consider a sufficiently rich class of perturbations. In the figure

the component #3 of equilibria of game G has two endpoints that are each ‘perfect’

in the sense that nearby games to the right of G have nearby equilibria, but games

to the left of G have no equilibria near this component.

3In [9] we show that a component is essential (has nonzero index) if and only if it satisfies a slightly
stronger criterion called uniform hyperstability.
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(3) A refinement should select a subset rather than a single equilibrium. In the figure the

component #4 is robust as a set, but no single point is robust—games to the right

of G have equilibria only near the top endpoint and games to the left have equilibria

only near near the bottom endpoint.

(4) A refinement can consider all perturbations in any sufficiently rich class of perturba-

tions. The preceding three considerations remain true for various classes of pertur-

bations that are smaller than the class of all payoff perturbations. For example, the

effect of perturbations of players’ strategies by trembles (as in Selten’s formulation)

induces a (lower dimensional) subclass of payoff perturbations.

Based on these considerations, KM define three refinements based on successively smaller

subclasses of perturbations of the strategic form of the game. In each case they include

the auxiliary requirements that a selected subset is closed and minimal among those with

the specified property. Further, Invariance is always assumed, so the property must persist

for every enlargement of the game obtained by treating any finite set of mixed strategies

as additional pure strategies—or equivalently, the refinement depends only on the reduced

strategic form of the game.

• A hyperstable subset of the equilibria survives all payoff perturbations.

• A fully-stable subset survives all polyhedral perturbations of players’ strategies. That

is, each neighborhood of the subset contains an equilibrium of the perturbed game

obtained by restricting each player to a closed convex polyhedron of completely mixed

strategies, provided each of these polyhedra is sufficiently close (in Hausdorff distance)

to the simplex of that player’s mixed strategies.

• A stable subset survives all trembles of players’ strategies. Specifically, for every

ε > 0 there exists δ̄ > 0 such that for each δ ∈ (0, δ̄)N and completely mixed profile

η the perturbed game obtained by replacing each pure strategy sn of each player n

by the mixture [1− δn]sn + δnηn has an equilibrium within ε of the subset.

From (1) above, some component contains a hyperstable subset, and within that there

is a fully stable subset, which in turn contains a stable subset, since smaller subsets can

survive smaller classes of perturbations. A fully-stable subset is useful because it necessarily

contains a proper equilibrium of the strategic form that induces a sequential equilibrium

in every extensive form with that strategic form. But a hyperstable or fully-stable subset

can include equilibria that use inadmissible strategies, which is why KM focus on stable

subsets. However, for an extensive-form game, a stable subset need not contain a sequential

equilibrium.
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R C: D d a
D 1,0 1,0 1,0
d 0,2 3,0 3,0
a 0,2 0,4 0,0

Table 1. Strategic form G of the game Γ in Figure 6

KM’s article ended perplexed that no one of their three refinements ensures both admissi-

bility and backward induction. This conundrum was resolved later by Mertens [16, 17] who

defined a stronger refinement (called here Mertens-stability) that satisfies all the criteria

examined by KM, and more besides. Because Mertens-stability is couched in the apparatus

of the theory of homology developed in algebraic topology, it is not widely accessible to

non-specialists and we do not set forth its definition here.

Our purpose in this article is to show that KM’s stability can be refined to select stable

subsets that do indeed satisfy admissibility and backward induction. As described in the

opening paragraphs of §1, we prove that a refinement that satisfies Invariance and Strong

Backward Induction (SBI), defined formally in §3, contains a stable subset. Existence of

stable subsets with these properties is assured because they are implied by Mertens-stability.

2.3. A Simple Example. In this subsection an example illustrates the interaction between

Invariance and SBI. The example is sufficiently simple that it suffices to ignore admissibility

and to represent backward induction by sequential equilibrium.

Figure 6 shows at the top an extensive-form game Γ in which players R and C alternate

moves. In the subgame-perfect equilibrium each player chooses down at his first opportunity,

which we represent by the pure strategy D, ignoring his subsequent choice were the player

to err. With this convention the strategic form G of this game is shown in Table 1.

There is a single component of the Nash equilibria of G, in which R uses D and C uses any

mixed strategy for which the probability of D is > 2/3. The component of perfect equilibria

requires further that C’s probability of a is zero. The minimal stable subset consists of the

two endpoints of the perfect-equilibrium component; viz., the subgame-perfect equilibrium

(D,D), and (D, y◦) where y◦ = (2/3, 1/3, 0) is the mixed strategy with probabilities 2/3 and

1/3 for D and d.

Figure 6 shows at the bottom the expansion Γ(δ) of the extensive form in which player R

can reject D and then choose either the mixed strategy x(δ) = (1−δ, δ/4, 3δ/4) or continue by

choosing A and then later d or a if C chooses A. The two information sets of C indicate that

C cannot know whether R chose x(δ). Thus, the expanded game has imperfect information

in the sense of imperfect observability of R’s choice. Even so, the reduced strategic form of
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Figure 6. Top: A game Γ between players R and C. Bottom: The game
modified so that player R can commit to the mixed strategy x(δ) after rejecting
D.

the expanded game is the same as the original strategic form G in Table 1, since x(δ) is a

redundant strategy.

Assume that 0 < δ < 1. One can easily verify that there is a unique sequential equilibrium

in the expanded extensive form Γ(δ). In the strategic form this is the equilibrium in which

R chooses D and C randomizes between D and d with probabilities α(δ) and 1−α(δ), where

α(δ) = [8 + δ]/[12 − 3δ]. In the extensive form this is sustained by C’s belief at her first

information set that the conditional probability that R chose x(δ) given that he rejected D

is β(δ) = 2/[2+ δ]. By Bayes’ Rule, the conditional probability that R chose x(δ) given that

A occurred is p = 2/3.

A refinement that includes the sequential equilibrium of each expanded extensive form Γ(δ)

must therefore include every profile (D; α(δ), 1 − α(δ), 0) as δ varies between zero and one.

Since α(0) = 2/3 and α(1) = 1 this requires the refinement to select the entire component of
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perfect equilibria. In fact, this is precisely the Mertens-stable subset. Appendix A extends

the analysis of this example to general two-player games with perfect information.

As described in §2.1, refinements like subgame-perfection and sequential equilibrium that

focus on the extensive form aim to exclude equilibria that are not credible because they rely

on an ability to commit to a strategy that is not modelled explicitly. In contrast, the strategic

form seems to assume commitment. And seemingly worse, the above example illustrates

that a refinement that satisfies Invariance allows a player to commit to a redundant strategy

midway in the extensive form. The resolution of this conundrum lies in the additional

assumption of backward induction. Together, Invariance and backward induction imply that

a selected subset must include a sequential equilibrium of each expanded extensive form with

the same reduced strategic form. In §4 and §5 we prove in general that the conjunction of

Invariance and Strong Backward Induction implies that a selected subset must contain a

stable subset of the reduced strategic form.

3. Formulation

We consider games with finite sets of players and pure strategies. The strategic form of a

game is specified by a payoff function G :
∏

n∈N Sn → RN where N is the set of players and

Sn is player n’s set of pure strategies. Interpret a pure strategy sn as a vertex of player n’s

simplex Σn = ∆(Sn) of mixed strategies. The sets of profiles of pure and mixed strategies

are S =
∏

n Sn and Σ =
∏

n Σn.

In a game G a pure strategy sn of player n is redundant if n has in G a mixed strategy

σn 6= sn that for every profile of mixed strategies of the other players yields for every player

the same expected payoff as sn yields. The strategic form is reduced if no pure strategy is

redundant. Say that two games are equivalent if their reduced strategic forms are the same

(except for labelling of pure strategies). We use the reduced strategic form of a game as the

representative of its equivalence class. Each game in an equivalence class is an expansion of

its reduced strategic form obtained by adjoining redundant pure strategies.

Say that two mixed strategies of a player in two equivalent games are equivalent if they

induce the same probability distribution (called their reduced version) on his pure strategies

in the reduced strategic form. Similarly, two profiles are equivalent if the players’ strategies

are equivalent, and two sets of profiles are equivalent if they induce the same sets of profiles

in the reduced strategic form.

In general, a refinement is a correspondence that assigns to each game a collection of closed,

nonempty subsets of its equilibria, called the selected subsets. However, each equilibrium
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induces a family of equivalent equilibria for each expansion of the game obtained by adding

redundant strategies. Therefore, we assume:4

Assumption 3.1. Invariance. Each selected subset is equivalent to a subset selected for

an equivalent game. Specifically, if G and G̃ are equivalent games then a subset Σ◦ selected

for G is equivalent to some subset Σ̃◦ selected for G̃.

In particular, every equivalent game has a selected subset whose reduced version is a selected

subset of the reduced strategic form. This is slightly weaker than requiring that a refinement

depends only on the equivalence classes of games and strategies; cf. Mertens[18] for a detailed

discussion of invariance, and more generally the concept of ordinality for games.

To each game in strategic form we associate those games in extensive form with perfect

recall that have that strategic form. Each extensive form specifies a disjoint collection

H = {Hn | n ∈ N} of the players’ information sets, and for each information set h ∈ Hn

it specifies a set An(h) of possible actions by n at h. In its strategic form the set of pure

strategies of player n is Sn = {sn : Hn → ∪h∈HnAn(h) | sn(h) ∈ An(h)}. The projection of

Sn onto h and n’s information sets that follow h is denoted Sn|h; that is, Sn|h is the set of

n’s continuation strategies from h. Let Sn(h) be the set of n’s pure strategies that choose

all of n’s actions necessary to reach h ∈ Hn, and let Sn(a|h) be the subset of strategies

in Sn(h) that choose a ∈ An(h). Then a completely mixed strategy σn À 0 induces the

conditional probability σn(a|h) =
∑

sn∈Sn(a|h) σn(sn)/
∑

sn∈Sn(h) σn(sn) of choosing a at h.

More generally, a behavior strategy βn ∈
∏

h∈Hn
∆(An(h)) assigns to each information set h

a probability βn(a|h) of action a ∈ An(h) if h is reached. Kuhn [14] shows that mixed and

behavior strategies are payoff-equivalent in extensive-form games with perfect recall.

Given a game in extensive form, an action perturbation ε : H → (0, 1)2 assigns to each

information set a pair (ε(h), ε̄(h)) of small positive numbers, where 0 < ε(h) 6 ε̄(h). Use

{ε} to denote a sequence of action perturbations that converges to 0.

Definition 3.2. Quasi-Perfect.5 A sequence {σε} of profiles is {ε}-quasi-perfect if for each

a ∈ An, h ∈ Hn, n ∈ N and each action perturbation ε:

(1) σε
n(a|h) > ε(h), and

4The proof of the main theorem uses only a slightly weaker version: a selected subset is equivalent to a
superset of one selected for an expanded game obtained by adding redundant strategies.

5This definition differs from van Damme [6] in that the upper bound ε̄(·) of the error probability can differ
across information sets. However, it is easily shown that the set of quasi-perfect equilibria as defined by van
Damme is the set of all profiles of behavioral strategies equivalent to limits of sequences of {ε}-quasi-perfect
equilibria as defined here in terms of mixed strategies. van Damme does not impose an explicit lower bound
but because the strategies are completely mixed there is an implicit lower bound that shrinks to zero as
ε ↓ 0.
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(2) σε
n(a|h) > ε̄(h) only if a is an optimal action at h in reply to σε; that is, only if

sn(h) = a for some continuation strategy sn ∈ arg maxs∈Sn|h E[Gn | h, s, σε
−n].

Suppose that σn(·|h) = limε↓0 σε
n(·|h). Then this definition says that player n’s continua-

tion strategy at h assigns a positive conditional probability σn(a|h) > 0 to action a only if a is

chosen by a continuation strategy that is an optimal reply to sufficiently small perturbations

(σε
n′)n′ 6=n of other players’ strategies. Thus when solving his dynamic programming problem,

player n takes account of vanishingly small trembles by other players but ignores his own

trembles later in the game. In particular, this enforces admissibility of continuation strategies

conditional on having reached h. Van Damme [6] shows that the pair (µ, β) = limε↓0(µε, βε)

of belief and behavior profiles is a sequential equilibrium, where σε induces at h ∈ Hn the

conditional probability µε
n(t|h) of node t ∈ h and the behavior βε

n(a|h) = σε
n(a|h) is player

n’s conditional probability of choosing a at h.

Our second assumption requires that each sequence of action perturbations induces a

further selection among the profiles in a selected set.

Assumption 3.3. Strong Backward Induction. For a game in extensive form with

perfect recall for which a refinement selects a subset Σ◦ of equilibria, for each sequence

{ε} of action perturbations there exists a profile σ ∈ Σ◦ that is the limit of a convergent

subsequence {σε} of {ε}-quasi-perfect profiles.

This assumption could as well be called ‘truly’ or Strong Quasi-Perfection. As the proofs in

Sections 3 and 4 show, Theorem 1 remains true if Assumption 3.3 is weakened by requiring

action perturbations to satisfy the additional restriction that ε(h) = ε̄(h) for all h. The

reason we do not do so is conceptual. The lower bound ε(·) reflects the requirement that

every action of a player is chosen with positive probability, while ε̄(·) provides the upper

bound on the “error probability” of suboptimal actions at an information set.

We conclude this section by defining stability. In general, a closed subset of the equilibria

of a game in strategic form is deemed stable if, for any neighborhood of the set, every

game obtained from a sufficiently small perturbation of payoffs has an equilibrium in the

neighborhood. However, to ensure admissibility, KM focus on sets that are stable only

against those payoff perturbations induced by strategy perturbations.

For 0 6 δ 6 1, let Pδ = {(λnτn)n∈N | (∀ n) 0 6 λn 6 δ, τn ∈ Σn} and let ∂Pδ be the

topological boundary of Pδ. For each η ∈ P1, and n ∈ N , let ηn =
∑

s∈Sn
ηn(s). Given any

η ∈ P1, a perturbed game G(η) is obtained by replacing each pure strategy sn of player n

with ηn + (1 − ηn)sn. Thus G(η) is the perturbed game in which the strategy sets of the

players are restricted so that the probability that n plays a strategy s ∈ Sn must be at least
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ηn,s. For a vector (λ, τ) ∈ [0, 1]N × Σ, we sometimes write G(λ, τ) to denote the perturbed

game G((λnτn)n∈N).

Definition 3.4. Stability. A closed set Σ◦ of equilibria of the game G is stable if for each

ε > 0 there exists δ > 0 such that for each η ∈ Pδ\∂Pδ the perturbed game G(η) has an

equilibrium within ε of Σ◦.

To avoid the trivially stable set of all equilibria, KM focus on minimal stable sets:

Definition 3.5. KM-Stability. A set of equilibria of the game G is KM-stable if it is a

minimal stable set.

4. Two-Player Games

This section provides a direct proof of the main theorem for the special case of two players.

It is simpler than the proof of the general case in §5 because two-player games have a linear

structure. This structure enables a generalization—statement (3) in the following Theorem—

of the characterization of stability obtained by Cho and Kreps [5] and Banks and Sobel [1]

for the special case of sender-receiver signaling games in extensive form with generic payoffs.

Theorem 4.1 (Characterization of Stability). Let G be a 2-player game, and let Σ◦ be a

closed subset of equilibria of G. The following statements are equivalent.

(1) Σ◦ is a stable set of the game G.

(2) For each τ ∈ Σ\∂Σ there exists sequence σk in Σ converging to a point in Σ◦ and a

corresponding sequence λk in (0, 1) converging to 0, such that σk is an equilibrium

of G(λkτ) for all k.

(3) For each τ ∈ Σ\∂Σ there exists σ◦ ∈ Σ◦, a profile σ̃ ∈ Σ, and 0 < λ 6 1 such that,

for each player n, λσ◦n(s) + [1− λ]σ̃n(s) is an optimal reply against both σ◦ and the

profile σ∗ = λτ + [1− λ]σ̃.

Proof. We prove first that statement 1 implies statement 2. Suppose Σ◦ is a stable set. Fix

τ ∈ Σ\∂Σ. Then for each positive integer k one can choose λk ∈ (0, 1/k) and an equilibrium

σk of G(λkτ) whose distance from Σ◦ is less than 1/k. Let σ◦ be the limit of a convergent

subsequence of σk. Then σ◦ ∈ Σ◦, which completes the proof.

Next we prove that statement 2 implies statement 3. Fix τ ∈ Σ\∂Σ. Statement 2 assures

us that there exists a sequence λk in (0, 1) converging to zero and a sequence σk of equilibria

of G(λkτ) converging to an equilibrium σ◦ in Σ◦. By passing to a subsequence if necessary,

we can assume that the set of optimal replies in G to σk is the same for all k. Define σ∗ and

λ to be the first elements of the sequences of σk and λk. And let σ̃ = [σ∗−λτ ]/(1−λ). Then,
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σ∗ = (1−λ)σ̃ +λτ . Because σ∗ is an equilibrium of G(λτ), σ̃ is an optimal reply to σ∗. The

best replies being constant along the sequence of σk, σ̃ is a best reply all along the sequence

of σk and hence to the limit, σ◦. Because the sequence of σk are equilibria of perturbed

games converging to it, σ◦ is optimal against σk for large k and is therefore optimal against

the entire sequence σk (in particular against σ∗ and the limit σ0 itself). Thus, σ̃ and σ◦

satisfy the optimality condition of statement 3.

Lastly we prove that statement 3 implies statement 1 by showing that Σ◦ satisfies the

property in Definition 3.4 of a stable set. Fix an ε-neighborhood of Σ◦. Take a sufficiently

fine simplicial subdivision of Σ such that: (i) the union U of the simplices of this complex

that intersect Σ◦ is contained in its ε-neighborhood; and (ii) the best-reply correspondence

is constant over the interior of each simplex. Because G is a two-player game, this simplicial

subdivision can be done such that each simplex is actually a convex polytope. Observe that

U is itself a closed neighborhood of Σ◦. Let Q be the set of all pairs (η, σ) ∈ P1×U such that

σ is an equilibrium of G(η); and let Q0 be the set of (0, σ) ∈ Q, namely, the set of equilibria

of the game G that are contained in U . By property (ii) of the triangulation and because

the simplices are convex polytopes, Q and Q0 are finite unions of polytopes. Triangulate Q

such that Q0 is a subcomplex, and take a barycentric subdivision so that Q0 becomes a full

subcomplex. Because Q is a union of polytopes, both the triangulation and the projection

map p : Q → P1 can be made piecewise-linear. Let X be the union of simplices of Q that

intersect Q0. Because Q0 is a full subcomplex the intersection of each simplex of Q with Q0

is a face of the simplex. Let X0 = X ∩ Q0 and let X1 be the union of simplices of X that

do not intersect Q0. Given x ∈ X, there exists a unique simplex K of X that contains x in

its interior. Let K0 be the face of K that is in X0, and let K1 be the face of K spanned

by the vertices of K that do not belong to K0. K1 is then contained in X1. Therefore, x is

expressible as a convex combination [1 − α]x0 + αx1, where xi ∈ Ki for i = 0, 1; moreover,

this combination is unique if x 6∈ X0 ∪X1. Finally, p(x) = [1 − α]p(x0) + αp(x1) = αp(x1)

because the projection map p is piecewise affine.

Choose δ∗ > 0 such that for each (η, σ) ∈ X1, maxn ηn > δ∗. Such a choice is possible

because X1 is a compact subset of Q that is disjoint from Q0. Fix now δ1, δ2 < δ∗ and

τ ∈ Σ. The proof is complete if we show that the game G(δ1τ1, δ2τ2) has an equilibrium

in U . By statement 3, there exists σ◦ ∈ Σ◦, σ̃ ∈ Σ and 0 < µ 6 1 such that σ(γ) =

((1− γδn)σ◦n + γδn((1− µ)σ̃n + µτn))n=1,2 is an equilibrium of G(γµ(δ1τ1, δ2τ2)) for all 0 6
γ 6 1. Because σ(0) = σ◦ ∈ Σ◦, we can choose γ sufficiently small that the point x =

(γµ(δ1τ1, δ2τ2), σ(γ)) belongs to X\(X0 ∪ X1); hence there exists a unique α ∈ (0, 1) and

xi ∈ X i for i = 0, 1 such that x is an α-combination of x0 and x1. As remarked before,
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p(x) = αp(x1). Therefore, there exists σ ∈ Σ such that x1 = (γ∗µ(δ1τ1, δ2τ2), σ), where

γ∗ = γ/α. Because points in X1 project to P1\Pδ∗ , γ∗µδn > δ∗ for some n; that is, γ∗µ > 1

since δn < δ∗ for each n by assumption. Therefore, the point [1 − 1/γ∗µ]x0 + [1/γ∗µ]x1

corresponds to an equilibrium of the game G(δ1τ1, δ2τ2) that lies in U . This proves statement

1. ¤

The characterization in statement 3 of Theorem 4.1 can be stated equivalently in terms

of a lexicographic probability system (LPS) as in Blume, Brandenberger, and Dekel [2]. As

a matter of terminology, given an LPS (σ0
m, . . . , σk

m) for player m, we say that for player

n 6= m, a strategy σn is a better reply against the LPS than another strategy σ′n if it is a

lexicographic better reply. (Here, and throughout the paper, by a better reply we mean a

strictly better reply as opposed to a weakly better reply.) And σn is a best reply against the

LPS if there is no better reply.

Corollary 4.2 (Lexicographic Characterization). A closed set Σ◦ of equilibria of G is a

stable set if and only if for each τ ∈ Σ\∂Σ there exists σ0 ∈ Σ◦, a profile σ̃ ∈ Σ, and for

each player n, an LPS Ln = (σ0
n, . . . , σ

Kn
n ) where Kn > 0 and σKn

n = [1 − λn]σ̃n + λnτn for

some λn ∈ (0, 1], such that for each player n every strategy that is either: (i) in the support

of σk with k < Kn or (ii) in the support of σ̃n if λn < 1, is a best reply to the LPS of the

other player.

Proof. The necessity of the condition follows from statement 3. As for sufficiency, we show

that the condition of the Corollary implies statement 2. Fix τ ∈ Σ\∂Σ and let (L1,L2)

be as in the Corollary. Choose an integer K that is greater than Kn for each n. For

each n, define a new LPS L′n = (σ̂0
n, . . . , σ̂

K
n ) as follows: for 0 6 k 6 K −Kn, σ̂k

n = σ◦n; for

K−Kn+1 6 k < K, σ̂k
n = σk−K+Kn

n ; σ̂K
n = [µ/λn]σKn

n +[1−µ/λn]σ◦n, where µ = min(λ1, λ2).

Observe that for each n,

σ̂K
n = µτn + [(µ(1− λn)σ̃n + (λn − µ)σ0]/λn.

Therefore, the LPS profile (L′1,L′2) satisfies the condition of the Corollary as well. For α > 0,

define σ(α) by σn(α) = (
∑K

k=0 αk)
−1

(
∑K

k=0 αkσ̂k
n). For all small α, we now have that σ(α) is

an equilibrium for the perturbed game G(λ(α)τ) where λ(α) = (
∑K

k=0 αk)
−1

αKµ. Because

σ(α) converges to σ0 as α goes to zero, the condition of the Corollary implies statement 2

of the Theorem. ¤

We show in Appendix A that for generic two-person extensive form games, the require-

ments for stability in the above lexicographic characterization can be weakened further. As
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mentioned before, (a version of) the characterization of stability in statement 3 of Theo-

rem 4.1 is obtained by Cho and Kreps [5] and Banks and Sobel [1] for the special case of

sender-receiver signaling games in extensive form with generic payoffs—games like the one

in Figure 3. In Appendix C we show directly that if a component of the equilibria violates

this condition then a single redundant strategy can be adjoined to obtain an equivalent game

that has no proper equilibrium yielding the same outcome.

We conclude this section by proving the main theorem for two-player games.6

Proposition 4.3 (Sufficiency of the Assumptions). If a refinement satisfies Invariance and

Strong Backward Induction then for any two-player game a selected subset is a stable set of

the equilibria of its strategic form.

Proof. Let G be the strategic form of a 2-player game. Suppose that Σ◦ ⊂ Σ is a set selected

by a refinement that satisfies Invariance and Strong Backward Induction. Let τ = (τ1, τ2) be

any profile in the interior of Σ. We show that Σ◦ satisfies the condition of Corollary 4.2 for τ .

Construct as follows the extensive-form game Γ with perfect recall that has a strategic form

that is an expansion of G. In Γ each player n first chooses whether or not to use the mixed

strategy τn, and if not, then which pure strategy in Sn to use. Denote the two information

sets at which n makes these choices by h′n and h′′n. At neither of these does n have any

information about the other player’s analogous choices. In Γ the set of pure strategies for

player n is S∗n = {τn}∪Sn (after identifying all strategies where n chooses to play τn at his first

information set h′n) and the corresponding simplex of mixed strategies is Σ∗
n. For each δ > 0

in a sequence converging to zero, let {ε} be a sequence of action perturbations that require

the minimum probability of each action at h′n to be ε(h′n) = δ, and the maximum probability

of suboptimal actions at h′′n to be ε̄(h′′n) = δ2. By Invariance, the refinement selects a set

Σ̃◦ for Γ that is a subset of those strategies equivalent to ones in Σ◦. By Strong Backward

Induction there exists a subsequence {σ̃ε} of {ε}-quasi-perfect profiles converging to some

point σ̃0 ∈ Σ̃◦. If necessary by passing to a subsequence, by Blume, Brandenberger, and

Dekel [2, Proposition 2] there exists for each player n: (i) an LPS L̃n = (σ̃0
n, σ̃

1
n, . . . , σ̃Kn

n ),

with members σ̃k
n ∈ Σ∗

n, ∪Kn
k=0 supp σ̃k

n = S∗n; and (ii) for each 0 6 k < Kn a sequence of

positive numbers λk
n(ε) converging to zero such that each σ̃ε

n in the sequence is expressible

as the nested combination ((1− λ0
n(ε))σ̃0

n + λ0
n((1− λ1

n(ε))σ̃1
n + λ1

n(· · ·+ λKn−1
n (ε)σ̃Kn

n ))). Let

6An anonymous referee has shown in his or her report that for 2-player games, in the definition of Strong
Backward Induction, quasi-perfection in the extensive form can be replaced by perfection in the strategic
form (we do not reproduce the referee’s proof here). This reflects indirectly the fact that for 2-player games
the sets of strategic-form perfect and admissible equilibria coincide.
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k∗n be the smallest k for which σ̃k
n assigns positive probability to the “pure” strategy τn of

the expanded game.

Lemma 4.4. Suppose sn ∈ Sn is not a best reply to the LPS of the other player. Then

sn ∈ Sn is assigned zero probability by σ̃k
n for k 6 k∗n, and k∗n > 0.

Proof of Lemma. Since sn is not a best reply to the LPS of the other player, sufficiently

far along the sequence, sn is not a best reply against σ̃ε. Quasi-perfection requires that

σ̃ε
n(τn|h′n) > ε(h′n) = δ and σ̃ε

n(sn|h′′n) 6 ε̄(h′′n) = δ2. Hence limε↓0 σ̃ε
n(sn|h′′n)/σ̃ε

n(τn|h′n) = 0.

Therefore σ̃k
n(sn) = 0 for all k 6 k∗n, which proves the first statement of the lemma. As for

the second statement, observe that the pure strategy τn is not a best reply to the LPS of

the other player, since τn, viewed as a mixed strategy in Σn, has full support. Therefore, far

along the sequence, τn is not a best reply to σ̃ε
n. Quasi-perfection now requires that τn is

assigned the minimum probability δ by the sequence and hence its probability in the limit

σ̃0
n of the sequence σ̃ε

n is zero, which means that k∗n > 0. ¤

From the LPS L̃ construct for each player n an LPS Ln = (σ0
n, σ1

n, . . . , σ
k∗n
n ) for the game

G by letting σk
n be the mixed strategy in Σn that is equivalent to σ̃k

n. Because σ̃0 ∈ Σ̃0, σ0

belongs to Σ0. For each n, let λn be the probability assigned to the strategy τn in σ̃
k∗n
n . By

the definition of k∗n, λn > 0. If λn 6= 1, let σ′n be the mixed strategy in Σn that is given by the

conditional distribution over Sn induced by σ̃
k∗n
n , that is, the probability of a pure strategy

s ∈ Sn under σ′n is (1− λn)−1σ̃
k∗n
n (s); if λn = 1, let σ′n be an arbitrary strategy in Σn. By the

definition of Ln, σ
k∗n
n = λnτn +[1−λn]σ′n. For each n, define an LPS L′n as follows: if k∗n > 0,

then L′n = Ln; otherwise, L′n = (σ0
n, σ0

n). We now show that the LPS profile (L′1,L′2) satisfies

the conditions of Corollary 4.2 for τ . Each LPS L′n has at least two levels, where the last

level is λnτn + (1− λn)σ′n, λn > 0. We now show that the optimality property in Corollary

4.2 holds for each player n. If k∗n = 0 then by the previous Lemma every strategy of player

n is optimal. On the other hand, if k∗n > 0 (and thus L′n = Ln) then the first result of the

previous Lemma and the following two observations imply the optimality property. (1) By

the definition of k∗n and Ln, for each k < k∗n the probability of each s ∈ Sn is the same under

σk
n and σ̃k

n; (2) if λn 6= 1 then every strategy in the support of σ′n is in the support of σ̃
k∗n
n .

Thus we have shown that Σ◦ is a stable set. ¤

5. N-Player Games

This section provides the proof of the main theorem for the general case with N players.7

7The proof suggests how to use the method in Govindan and Klumpp [7] to extend to N -player games
the characterization of stable sets for two-player games in Theorem 4.1, but we do not include it here.
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We begin with some definitions. For a real-valued analytic function (or more generally

a power series) f(t) =
∑∞

i=0 ait
i in a single variable t, the order of f , denoted o(f), is the

smallest integer i such that ai 6= 0. The order of the zero function is +∞. We say that a

power series f is positive if ao(f) > 0; thus if f is an analytic function then f is positive if

and only if f(t) is positive for all sufficiently small t > 0. Suppose f and g are two power

series. We say that f > g if f − g is positive. We have the following relations for orders of

power series. o(fg) = o(f) + o(g); and o(f + g) > min(o(f), o(g)), with equality if f and g

are both nonnegative (or nonpositive). Suppose f and g are real-valued analytic functions

defined on (−t̄, t̄) where t > 0 and g 6= 0. If o(f) > o(g) then there exists an analytic

function h : (−t̄, t̄) → R such that for each t 6= 0, h(t) = f(t)/g(t), i.e. dividing f by g yields

an analytic function.

By a slight abuse of terminology, we call a function F : [0, t̄] → X, where X is a subset of

a Euclidean space RL, analytic if there exists an analytic function F ′ : (−δ, δ) → RL, δ > t̄,

such that F ′ agrees with F on [0, t̄]. For an analytic function F : [0, t̄] → Rk, the order o(F )

of F is mini o(Fi). If σ : [0, t̄] → Σ is an analytic function then for each pure strategy sn of

player n his payoff Gn(σ−n(t), sn) in the game G is an analytic function as well, since payoff

functions are multilinear in mixed strategies. We say that sn is a best reply of order k for

player n against an analytic function σ(t) if for all s′n ∈ Sn, Gn(σ−n(t), sn)−Gn(σ−n(t), s′n)

is either nonnegative or has order at least k + 1; also, sn is a best reply to σ if it is a best

reply of order ∞.

Lemma 5.1. Suppose σ, τ : [0, t̄] → Σ are two analytic functions such that o(σ − τ) > k. If

sn is not a best reply of order k against σ then it is not a best reply of order k against τ .

Proof of Lemma. Let s′n be a pure strategy such that Gn(σ−n(t), sn) − Gn(σ−n(t), s′n) is

negative and has order, say, ` 6 k. Let τ ′ = τ − σ. We can then write

Gn(τ−n(t), sn)−G(τ−n(t), s′n) = [Gn(σ−n(t), sn)−G(σ−n(t), s′n)]

+
∑
s−n

∑

N ′$N\{n}


 ∏

n′∈N ′
σn′,sn′ (t)

∏

n′′∈N\(N ′∪{n})
τ ′n′′,sn′′

(t)


 [Gn(s−n, sn)−Gn(s−n, s′n)] .

The first term on the right in the above expression is negative and has order ` by assumption.

Therefore, to prove the result it is enough to show that the order of the double summation

is at least k + 1: it then follows that the whole expression is negative and has order `. To

prove this last statement, using the above property of the order of sums of power series, it

is sufficient to show that each of the summands in the second term has order at least k+1.

Consider now a summand for a fixed s−n and N ′ $ N\{n}. If both sn and s′n give the same
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payoff against s−n then the order of this term is ∞. Otherwise, using the property of the

order of products of functions, the order of this term is
∑

n′∈N ′
o(σn′,sn′ ) +

∑

n′′ /∈(N ′∪{n})
o(τ ′n′′,sn′′

) > k,

where the inequality follows from the following two facts: (i) the order of each σn′,sn′ is at

least zero; and (ii) there exists at least one n′′ /∈ (N ′ ∪ {n}) and for any such n′′ the order of

τ ′n′′,sn′′
is greater than k by assumption. ¤

We use the following version of a result of Blume, Brandenberger, and Dekel [2, Proposition

2].

Lemma 5.2. If the map τn : [0, t̄] → Σn is analytic then there exists 0 < t∗ 6 t̄ such that

for each t 6 t∗, τn(t) =
∑K

k=0 fk
n(t)τ k

n , where K 6 |Sn|, each τ k
n is in Σn, and each map

fk
n : [0, t∗] → R+ is analytic.

Proof of Lemma. There is nothing to prove if τn is a constant map. Therefore, assume that

it is not. Let τ 0
n = τn(0) and let S0

n be the support of τ 0
n. For each 0 6 t 6 t̄, define f 0

n(t)

to be mins∈S0
n
τn,s(t)/τ

0
n,s. Remark that if for some t, τn(t) 6= τ 0

n, then f 0
n(t) < 1; indeed, if

f 0
n(t) > 1 then for each pure strategy s (even if it is not in S0

n) τn,s(t) > τ 0
n,s and therefore

τn(t) = τ 0
n. Since τn(t) is analytic, there now exist 0 < t0 6 t̄ and s0 ∈ S0

n such that for

all t 6 t0, f 0
n(t) = τn,s0(t)/τn,s0 , i.e. f 0

n is analytic on [0, t0]. Moreover, since τn(t) is not a

constant function and since τn,s0(0) > 0, t0 can be chosen such that for all 0 < t 6 t0: (i)

τn(t) 6= τ 0
n; and (ii) τn,s0(t) > 0. Therefore, for 0 < t 6 t0, 0 < f 0

n(t) < 1, where the fact that

it is positive follows from the fact that τn,s0(t) is positive while the other inequality follows

from our earlier remark, since τn(t) 6= τ 0
n. We claim now that there is a well defined analytic

function τ 1
n : [0, t0] → Σn where for t 6= 0, τ 1

n(t) = [1 − f 0
n(t)]−1[τn(t) − f 0

n(t)τ 0
n]. Indeed to

prove this claim it is sufficient to show that: (i) 1−f 0
n(t) is positive; and (ii) for each s ∈ Sn,

τn,s(t) − f 0
n(t)τ 0

n,s is nonnegative with o(τn,s(t) − f 0
n(t)τ 0

n,s) > o(1 − f 0
n(t)). Point (i) follows

from the fact that f 0
n(t) < 1. As for point (ii), for s /∈ S0

n, τn,s(t) − f 0
n(t)τ 0

n,s = τn,s(t) > 0,

while if s ∈ S0
n, τn,s(t)− f 0

n(t)τ 0
n,s > τn,s(t)− (τn,s(t)/τ

0
n,s)τ

0
n,s = 0. Thus τn,s(t)− f 0

n(t)τ 0
n,s is

nonnegative for each s ∈ Sn. And, as a result, we also have that for each s ∈ Sn, o(τn,s(t)−
f 0

n(t)τ 0
n,s) > mins′ o(τn,s′(t) − f 0

n(t)τ 0
n,s′) = o(

∑
s′(τn,s′(t) − f 0

n(t)τ 0
n,s′)) = o(1 − f 0

n(t)). Thus,

τ 1
n(t) is a well-defined analytic function. We now have that τn(t) = f 0

n(t)τ 0
n + [1− f 0

n(t)]τ 1
n(t)

for each t 6 t0. For 0 < t 6 t0, the support of τ 1
n(t) is contained in that of τn(t), since

fn(t) < 1; also, τ 1
n,s0(t) is zero, while τn,s0(t) is obviously not. Thus, supp τ 1

n(t) ( supp τn(t)

for all 0 < t 6 t0.
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If τ 1
n(t) is a constant function mapping to, say, τ 1

n ∈ Σn, let f 1
n(t) = (1 − f 0

n(t)) and

then τn(t) = f 0
n(t)τ 0

n + f 1
n(t)τ 1

n and we are done. So, assume that τ 1
n(t) is not a constant

function. Now let τ 1
n = τ 1

n(0) and S1
n = supp τ 1

n. We can repeat the above construction

for the function τ 1
n(t) to obtain the following. There exists 0 < t1 6 t0, s1

n ∈ S1
n, analytic

functions f̂ 1
n(t) : [0, t1] → R and τ 2

n(t) : [0, t1] → Σn such that for each 0 < t 6 t1: f̂ 1
n(t) =

mins∈S1
n
τ 1
n,s(t)/τ

1
n,s = τ 1

n,s1(t)/τ 1
n,s1 ; 0 < f̂ 1

n(t) < 1; τ 2
n(t) = [1 − f̂ 1

n(t)]−1[τ 1
n(t) − f̂ 1

n(t)τ 1
n].

Obviously, supp τ 2
n(t) ⊆ supp τ 1

n(t). On the other hand, as before, f 1
n(t) = τ 1

n,s1(t)/τ 1
n,s1 and

thus τ 2
n,s(t) = 0 while τ 1

n,s1(t) is not: in particular supp τ 2
n(t) $ supp τ 1

n(t) $ supp τn(t) for all

0 < t 6 t1. We now have τn(t) = f 0
n(t)τ 0

n +f 1
n(t)τ 1

n +f 2
n(t)τ 2

n(t) where f 1
n(t) = [1−f 0

n(t)]f̂ 1
n(t)

and f 2
n(t) = [1−f 0

n(t)][1−f̂ 1
n(t)]. We can continue this process to obtain a sequence of analytic

functions τ k
n : [0, tk] → Σn, k = 0, 1, . . . , with 0 < tk 6 tk−1, τ k

n ≡ τ k
n(0), and a corresponding

sequence of analytic functions fk
n : [0, tk] → [0, 1] such that for each k and 0 < t 6 tk,

supp τn(t) % supp τ 1
n(t) % supp τ 2

n(t) · · · % supp τ k
n(t) and τn(t) =

∑k−1
i=0 f i

n(t)τ i
n + fk

nτ k
n(t).

This process must terminate in a finite number of steps, in the sense that there exists

K 6 |Sn| such that τK
n (t) is a constant function. ¤

Theorem (Main Theorem). If a refinement satisfies Invariance and Strong Backward In-

duction then for any game a selected subset is a stable set of the equilibria of its strategic

form.

Proof. We show that if a refinement selects a subset Σ◦ ⊂ Σ of profiles that is not a stable set

for the strategic-form game G then it satisfies Invariance only if it violates Strong Backward

Induction.

Suppose Σ◦ is not a stable set. Then there exists ε > 0 such that for each δ ∈ (0, 1) there

exists η ∈ Pδ\∂Pδ such that the perturbed game G(η) does not have an equilibrium in the ε-

neighborhood U of Σ◦. Take a closed semi-algebraic neighborhood X of Σ◦ that is contained

in U . Let A = {(λ, τ) ∈ (0, 1)N × (Σ\∂Σ) | G(λ, τ) has no equilibrium in X}; then A is

nonempty and there exists τ ◦ ∈ Σ such that (0, τ ◦) is in the closure of A. Further, because

X is semi-algebraic, A too is semi-algebraic. Therefore, by the Nash Curve Selection Lemma

(cf. Bochnak, Coste, and Roy [4, Proposition 8.1.13]) there exists t̄ > 0 and a semialgebraic

analytic map t 7→ (λ(t), τ(t)) from [0, t̄] to [0, 1]N × Σ such that (λ(0), τ(0)) = (0, τ ◦) and

(λ(t), τ(t)) ∈ A for all t ∈ (0, t̄]. Define the compact semi-algebraic set

Y = {(t, σ) ∈ [0, t̄]×X | (∀ sn ∈ Sn) σn,sn > λn(t)τn,sn(t)} .

Observe that if (t, σ) ∈ Y with t 6= 0 then σ is not an equilibrium of G(λ(t), τ(t)).
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Lemma 5.3. There exists a positive integer p such that for every analytic function z 7→
(t(z), σ(z)) from an interval [0, z̄] to Y , where t(z) is a positive function, there exists a player

n and a pure strategy sn ∈ Sn such that σ(z) > λn(t(z))τn,sn(t(z)) and sn is not a best reply

of order o(t(z))p against σ(z).

Proof of Lemma. Define the maps α, β : Y → R via

α(t, σ) = max
n,sn∈Sn

{
[σn,sn − λn(t)τn,sn(t)]× max

s′n∈Sn

[Gn(s′n, σ−n)−Gn(sn, σ−n)]
}

and β(t, σ) = t. By construction, α, β > 0 and α−1(0) ⊆ β−1(0). By Lojasiewicz’s inequality

(Bochnak et al. [4, Corollary 2.6.7]) there exist a positive scalar c and a positive integer p such

that cα > βp. Given an analytic map z 7→ (t(z), σ(z)) as in the statement of the Lemma,

observe for each n, sn, s′n, that σn,sn(z)−λ(t(z))τn,sn(t(z)) and Gn(s′n, σ−n(z))−Gn(sn, σ−n(z))

are also analytic in z. Therefore there exists a pair n, sn that achieves the maximum in the

definition of α for all small z. Then

max
s′n

[Gn(s′n, σ−n(z))−Gn(sn, σ−n(z))] > α(t(z), σ(z)) > (t(z))p/c ,

where the first inequality follows from the fact that σn,sn(z) − λn(t(z))τn,sn(t(z)) 6 1. By

assumption, t(z) is positive. Therefore, maxn,sn,s′n [Gn(s′n, σ−n(z))−Gn(sn, σ−n(z))] is also a

positive analytic function and, being greater than c−1(t(z))p, has order at most o(t(z))p. ¤

Using Lemma 5.2 express each τn(t) as the sum
∑Kn

k=0 fk
n(t)τ k

n , where each τ k
n is a mixed

strategy in Σn and fk
n : [0, t̄] → R+ is analytic. Construct the game Γ in extensive form in

which each player n chooses among the following, while remaining uninformed of the others’

choices. Player n first chooses whether to commit to the mixed strategy τ 0
n or not; if not

then n chooses between τ 1
n or not, and so on for k = 2, . . . , Kn; and if n does not commit to

any strategy τ k
n then n chooses among the pure strategies in Sn. Let S̃ and Σ̃ be the sets

of pure and mixed-strategy profiles in Γ. (As in the two-person case, for each player n and

each 0 6 k 6 Kn we identify all strategies of n that choose, at the relevant information set,

to play the strategy τ k
n .) Because the strategic form of Γ is an expansion of G, Invariance

implies that for the game Γ the refinement selects a subset of those strategies equivalent to

Σ◦. We now show that the refinement does not satisfy Strong Backwards Induction in the

game Γ. The argument is by contradiction. Suppose it does satisfy SBI. For perturbations

of the game Γ use the following action perturbation: for the information set where n chooses

between τ k
n or not, use εk

n(t) = ε̄k
n(t) = λn(t)fk

n(t); and at the information set where n chooses

among the strategies in Sn, use εKn+1
n (t) = ε̄Kn+1

n (t) = tp+1, where p is as in Lemma 5.3.
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Let E be the set of (t, σ) ∈ (0, t̄] × Σ̃ such that σ is an {ε(t)}-quasi-perfect equilibrium

of Γ (i.e. satisfying conditions 1 and 2 of Definition 2.2) whose reduced-form strategy profile

in Σ lies in X. Because the minimum error probabilities are analytic functions of t, E is a

semi-analytic set.8 Strong Backward Induction requires that there exists σ̃0 ∈ Σ∗ such that

the reduced form of σ̃0 belongs to Σ0 and (0, σ̃0) belongs to the closure of E. By the Curve

Selection Lemma (cf. Lojasiewicz [15, II.3]) there exists an analytic function z 7→ (t(z), σ̃(z))

from [0, z̄] to [0, t̄]× Σ̃ such that (t(z), σ̃(z)) ∈ E for all z > 0 and (t(0), σ̃(0)) = (0, σ̃0). By

construction, 0 < o(t(z)) < ∞.

From σ̃(z) construct the analytic function σ̂(z) as follows: for each player n, choose a

strategy s∗n in Γ such that o(σ̃n,s∗n) is zero; that is, a strategy in the support of σ̃n(0). Let

S ′n be the set of all pure strategies sn of the original game G that are chosen with the

minimum probability in σ̃(t) (that is, with probability (t(z))p+1); let σ̂n,sn(z) = 0 for each

sn ∈ S ′n; define σ̂n,s∗n(z) = σ̃n,s∗n(z)+|S ′n|(t(z))p+1; and finally, let the probabilities of the other

strategies in σ̂ be the same as in σ̃. Obviously, o(σ̃(z) − σ̂(z)) > o(t(z))(p + 1) > o(t(z))p,

where the second inequality follows from the fact that 0 < o(t(z)) < ∞.

If σ̂n,sn(z) > 0 for some sn ∈ Sn then sn is a best reply against σ̃(z); hence by Lemma

5.1 sn is a best reply of order o(t(z))p against σ̂(z). Likewise, for each k the strategy sn

that plays τ k
n at the appropriate information set is optimal of order o(t(z))p against σ̂n(z) if

σ̂n,sn(z) > λn(t(z))fk
n(t(z)).

Let σ(z) be the reduced form of σ̂(z) in the game G. Because σ̂(0) = σ̃(0), there exists

z∗ > 0 such that σ(z) ∈ X for all z 6 z∗. We claim now that we have a well-defined

analytic function ϕ : [0, z∗] → Y given by ϕ(z) = (t(z), σ(z)): indeed, t and σ are analytic

functions and, as we remarked, σ(z) is contained in X; also, for each n and sn ∈ Sn,

σn,sn(z) > λn(t(z))τn,sn(t(z)), since in σ̃(z) (and therefore in σ̂(z)) the “pure” strategy τ k
n

is chosen with probability at least λn(t(z))fk
n(t(z)). Therefore, ϕ is a well-defined map, and

by the above lemma, there exist n, sn such that σn(z) assigns sn more than the minimum

probability even though it is not a best reply of order o(t(z))p against σn(z) (and σ̂(z)). By

the definition of σ(z) and σ̂(z), either (i) sn is assigned a positive probability by σ̂(z) or

(ii) a strategy τ k
n (containing sn in its support, when viewed as a mixed strategy in Σn) is

assigned a probability greater than λn(τ(z))fk
n(t(z)), even though it is not a best reply of

order o(t(z))p against σ̂(z), which contradicts the conclusion of the previous paragraph. In

the game Γ, therefore, for any sequence of sufficiently small t there cannot be a sequence of

8A ⊆ Rk is semi-analytic if for all x ∈ Rk, there exists a neighborhood U of x, such that A ∩ U is a finite
union of sets of the form {y ∈ U | f1(y) = · · · = fm(y) = 0, g1(y) > 0, . . . , gn(y) > 0} where f1, . . . fm,
g1, . . . , gn are analytic on U .
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{ε(t)}-quasi-perfect profiles whose reduced forms are in X. Thus Strong Backward Induction

is violated. ¤

6. Concluding Remarks

The contribution of the Main Theorem is the demonstration that a ‘truly perfect’ form of

backward induction, namely Strong Backward Induction, in an extensive-form game implies

stability in the strategic form, provided one links the two forms by requiring Invariance.

We accept the arguments for Invariance and admissibility adduced by Kohlberg and

Mertens as entirely convincing—to do otherwise would reject a cornerstone of decision theory.

Our assumptions differ primarily in using quasi-perfection to specify a form of backward in-

duction that ensures admissibility. Our result differs in that we obtain a refinement in which

a stable set must include a quasi-perfect and hence a sequential equilibrium of every extensive

form with the same reduced strategic form.9

In spite of its awkward name, quasi-perfection seems an appropriate refinement of weaker

forms of backward induction such as sequential equilibrium. Some strengthening is evidently

necessary since a sequential equilibrium can use inadmissible strategies and strategies that

are dominated in the continuation from an information set. Strong Backward Induction is

used in the proofs mainly to establish existence of lexicographic probability systems that

‘respect preferences’ as defined by Blume, Brandenberger, and Dekel [2]. Thus Assumption

3.3 might state directly that each sequence of perturbations of an extensive form should

refine the selected set by selecting a lexicographic equilibrium that respects preferences,

analogously to statement 3 of Theorem 4.1 and Corollary 4.2 for two-player games. It seems

plausible that quasi-perfection can be characterized in terms of a lexicographic equilibrium

with the requisite properties.

Appendix A. Generic Two-Person Extensive Form Games

This appendix proves the analog of Corollary 4.2 for generic extensive-form games.

We consider a fixed finite game tree with perfect recall and two players having the sets

Sn and Σn of pure and mixed strategies for each player n ∈ N = {1, 2}, and the spaces

9Kohlberg and Mertens [12, Appendix D] establish a comparable result in the special case of an isolated
equilibrium that assigns positive probability to every optimal strategy, and that is perfect with respect to
every perturbation of behavior strategies in every extensive form with the same reduced strategic form.
But such an ‘essential’ equilibrium need not exist; indeed, this seems to be the original motivation for
their definition of stable sets of equilibria. In [12, Appendix E] they argue that implementing backward
induction by sequential equilibrium cannot suffice to imply stability. They cite van Damme’s [6] work on
quasi-perfection but unfortunately they did not consider whether it is an appropriate implementation of
backward induction.
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S =
∏

n Sn and Σ =
∏

n Σn of pure and mixed strategy profiles. Given this game tree, let G
be the Euclidean space of players’ payoffs in extensive-form games with this tree.

Define E to be the following subset of the graph of the perturbed equilibrium correspon-

dence over the space of games: E is the set of those (G, λ, τ, σ) ∈ G× [0, 1]×Σ×Σ such that

(a) σ is an equilibrium of G(λτ) and (b) if λ = 0 then there exists a sequence λk ∈ (0, 1)

converging to zero and a sequence σk of equilibria of G(λkτ) converging σ. Denote by p the

natural projection from E to G.

Lemma A.1. For each game G, p−1(G) is compact.

Proof. Fix a game G ∈ G. Let Q be the set of those (η, σ) ∈ P1 × Σ such that σ is an

equilibrium of G(η). And, let Q0 be the subset of (0, σ) ∈ Q. Because G is a two-player

game, Q and Q0 are unions of polytopes. Triangulate Q such that Q0 is a full subcomplex

and each simplex of Q is convex. Let X be the union of the simplices of Q that intersect

Q0 but are not contained in Q0. Because Q0 is a full subcomplex of Q, the intersection of

each simplex of X with Q0 is a proper face of the simplex. Let X0 = X ∩ Q0 and let X1

be the union of simplices of X that do not intersect Q0. Given a point x ∈ X, let K be the

simplex that contains x in its interior. K ∩X i is a nonempty face of K for i = 0, 1 and every

vertex of K belongs to either X0 or X1. Therefore, x is expressible as a convex combination

α(x)x1 + [1− α(x)]x0, where xi ∈ K ∩X i for i = 0, 1.

We are now ready to prove the Lemma. Obviously it is sufficient to prove that p−1(G) is

closed. Accordingly, consider a sequence (G, λk, τ k, σk) in E converging to a point (G, λ, τ, σ).

We show that (G, λ, τ, σ) belongs to E . The result is clear if λ 6= 0. Therefore, assume that

λ = 0. By the definition of E , we can assume without loss of generality that λk ∈ (0, 1) for

all k.

Because λk > 0, (ηk, σk) ∈ Q\Q0, where ηk = λkτ k. If necessary by passing to a sub-

sequence, we can assume that the entire sequence (ηk, σk) is contained in the interior of a

simplex K of Q. The limit (0, σ) of the sequence then belongs to K and, therefore, K is

contained in X. For each k there exists (0, σ0k) ∈ X0∩K, (η1k, σ1k) ∈ X1∩K and a number

αk > 0 such that (ηk, σk) = [1 − αk](0, σ0k) + αk(η1k, σ1k). Clearly, for each k, η1k = µkτ k,

where µk = λk/αk. Since X1 ∩K is compact, by passing to an appropriate subsequence, we

can assume that (η1k, σ1k) converges to some (η1, σ1) ∈ X1 ∩ K, where obviously η1 6= 0.

Because η1k = µkτ k, and τ k converges to τ , this implies that µk converges to some µ 6= 0

and η1 = µτ .
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As (0, σ) and (η1, σ1) belong to K, so does (νη1, νσ1 + (1− ν)σ) for all ν ∈ [0, 1]. For all

ν ∈ (0, 1] now, (G, νµ, τ, νσ1 + (1− ν)σ) belongs to E , which shows that (G, 0, τ, σ) belongs

to E . ¤

Define E◦(G) = {(τ, σ) | (G, 0, τ, σ) ∈ E}. By Statement 2 of Theorem 4.1, a closed set

Σ◦ of equilibria of G is a stable subset iff for each τ ∈ Σ\∂Σ there exists σ ∈ Σ◦ such

that (τ, σ) ∈ E◦(G). We invoke a slightly weaker concept of stability that turns out to be

equivalent to stability for generic games in G.

For G ∈ G, define

Ẽ◦(G) = {(τ, σ) | ∃(Gk, λk, τ, σk) → (G, 0, τ, σ) s.t. ∀k, λk > 0, (Gk, λk, τ, σk) ∈ E}.
Call a closed set Σ◦ of equilibria of G a pseudo-stable set of G if (∀ τ ∈ Σ\∂Σ)(∃ σ ∈ Σ◦) such

that (τ, σ) ∈ Ẽ◦(G). Since E◦(G) ⊆ Ẽ◦(G), if Σ◦ is a stable set then it is a pseudo-stable set

as well. The following Proposition shows that for generic games the two concepts coincide.

Proposition A.2. There exists a closed lower-dimensional semialgebraic subset G† of G such

that for each G ∈ G\G† every pseudo-stable set of G is a stable set.

Proof. As in Blume and Zame [3, §2 Lemma] one applies the Generic Local Triviality Theo-

rem to the projection map p from E to G to establish existence of a closed lower-dimensional

subset G† ⊂ G such that for each connected component Gi of G\G† there exists a semi-

algebraic fiber C i and a homeomorphism hi : Gi ×Ci → p−1(Gi) such that [p ◦ hi](G, c) = G

for all (G, c) ∈ Gi × C i. By the previous Lemma, p−1 is compact valued and thus Ci is

compact.

To prove the theorem it is sufficient to show that for each G ∈ G\G†, E◦(G) ⊇ Ẽ◦(G). Let G

belong to a component Gi of G\G†. Pick (τ, σ) ∈ Ẽ◦(G). We now show that (G, 0, τ, σ) ∈ E .

Since (τ, σ) ∈ Ẽ◦(G), by definition, there exists a convergent sequence (Gk, λk, τ, σk) →
(G, 0, τ, σ) with each (Gk, λk, τ, σk) in E . Because Gi is a component of the open set G\G†,
the sequence (Gk, λk, τ, σk) is eventually in p−1(Gi). Therefore, for large k there exists ck in

Ci such that hi(Gk, ck) = (Gk, λk, τ, σk). Ci being compact, there exists c ∈ Ci that is a

limit of a convergent subsequence of ck. Obviously (G, 0, τ, σ) is the image of (G, c) under

hi and is therefore in E . ¤

We now prove the analog of Corollary 4.2.

Theorem A.3. For each G ∈ G\G† a closed subset of equilibria Σ◦ is stable iff

(*) for each τ ∈ Σ\∂Σ there exists an equilibrium σ0 in Σ◦, a profile σ̃ ∈ Σ,

and for each player n a lexicographic probability system Ln = (σ0
n, . . . , σ

Kn
n )
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where Kn > 0 and σKn
n = [1 − λn]σ̃n + λnτn for some λn ∈ (0, 1], such that

for each strategy s ∈ Sn with
∑Kn−1

k=0 σk
n(s) + [1 − λn]σ̃n(s) > 0 and each

information set h of n that s does not exclude, s is a conditionally optimal

reply at h for player n against σ
k(h)
m , where m 6= n and k(h) is the first

k ∈ { 0, . . . , Km } such that h is reached with positive probability when n

plays s and m plays σk
m.

Proof. The necessity follows by applying statement 3 of Theorem 4.1. To prove sufficiency

we invoke Proposition A.2: it is sufficient to show that Σ◦ is a pseudo-stable set and thus

to show that for each τ ∈ Σ\∂Σ there exists σ ∈ Σ◦ with (τ, σ) ∈ Ẽ◦(G). Fix τ ∈ Σ\∂Σ.

Let (L1,L2) be a an LPS profile as in the statement of the Theorem. The proof uses the

construction and notation from the (sufficiency) proof of Corollary 4.2. As there, obtain for

each player n, the LPS L′n = (σ̂0
n, . . . , σ̂

K
n ). For each n,

σ̂K
n = µτn + [(µ(1− λn)σ̃n + (λn − µ)σ0]/λn

and is thus expressible as an average µτn +(1−µ)σ̄n, where σ̄n is a convex combination of σ̃n

and σ◦n that equals σ◦n when λn = 1 and µ < 1. The profile (L′1,L′2) satisfies the optimality

property in (*). Specifically, for each player n, each strategy s that is in the support of σ̂k
n

for k < K or in the support of σ̄n when µ < 1 is optimal against L′m in the following sense:

at each information set h that s does not exclude, s is conditionally optimal against σ̂
k(h)
m ,

where k(h) is the first level of L′m that does not exclude h. Define σn(α) as in the proof of

Corollary 4.2. The optimality property for (L′1,L′2) implies that for each sufficiently small α

there exists a perturbed game G(α) such that: (a) G = limα↓0 G(α); and (b) each strategy in

the support of any σk with k < K, or in the support of σ̄ if µ < 1, is an optimal reply to σ(α)

in the game G(α).10 Therefore, (G(α), λ(α), τ, σ(α)) is in Ẽ , where λ(α) = (
∑K

k=0 αk)
−1

αKµ.

Thus, (τ, σ0) is in Ẽ◦(G) as claimed. ¤

Appendix B. Games with Perfect Information

This appendix generalizes the analysis of the example in §2.3 using the formulation in §3.

We consider an extensive-form game Γ with perfect information and, for simplicity, generic

payoffs and two players. As mentioned in §2.2, a proper equilibrium induces a quasi-perfect

and hence sequential equilibrium in every extensive-form game with that strategic form.

Therefore, in this section we represent Strong Backward Induction simply by the assumption

that a selected subset contains a proper equilibrium of the strategic form. Together with

10The proof of this fact follows the construction in the appendix of Kreps and Wilson (1982) by working
backwards through the tree.
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Invariance, this implies that a subset Σ◦ is selected for the strategic form G of Γ only if,

for every game G′ equivalent to G, there exists a proper equilibrium of G′ that is equivalent

to some equilibrium in Σ◦. To show that this property implies that a selected subset is

stable, for each strategy perturbation η of G we consider an equivalent game G′ obtained by

adjoining redundant strategic-form strategies that induce redundant behavioral strategies in

the extensive form Γ.

The interesting aspect of the following Proposition B.1 is that, even though the proper

equilibrium is merely the unique subgame-perfect equilibrium of the extensive-form game Γ,

Invariance requires a refinement to select a subset that includes other equilibria in a stable

set in the same component as the subgame-perfect equilibrium. This illustrates vividly that

even for perfect-information games, which are usually considered trivial and easily solved

by applying subgame-perfection, if one assumes Invariance then the selected subset must

survive all trembles of the players’ strategies.

Let Γ ∈ G\G† be a two-person perfect-information game with generic payoffs, and denote

by G its strategic form. (The sets G and G† are as in Appendix A and we further assume that

Γ has finitely many equilibrium outcomes, which is also a property of generic extensive-form

games.) Because Γ is a perfect-information game, each node x of the game tree of Γ defines

a subgame Γ(x) that has x as its root. When referring to player n, we use m to denote his

opponent. We say that a strategy σn ∈ Σn enables (or, alternatively, does not exclude) a

node x in the game Γ if there exists σm ∈ Σm such that x is reached with positive probability

under the profile (σn, σm). If a strategy σn enables a node x then it induces a continuation

strategy in the subgame Γ(x) in the obvious way.

Let Σ◦ be a closed set of equilibria, all of which induce the same probability distribution

P ◦ over outcomes. For a node x in the extensive form of Γ, P ◦(x) denotes the probability of

reaching x under the distribution P ◦. Because Γ is a generic game with perfect information,

for each x such that P ◦(x) > 0 and x is a node of one of the players, all equilibria in Σ◦

enable x and prescribe the same (pure) action there.

Proposition B.1. Suppose a refinement satisfies Invariance and selects only subsets con-

taining proper equilibria. If this refinement selects Σ◦ in the game G then Σ◦ is a stable set

of G.

The basic idea of the proof is to obtain the LPS induced by a proper equilibrium of an

expanded game, and then truncate the LPS to obtain one that satisfies condition (*) in

Theorem A.3. Unlike the example in §2.3, here we add two types of redundant strategies
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to cover all possibilities in the general case. First we establish notation and then, since the

proof is long, we break it into a series of Claims.

Fix τ ∈ Σ\∂Σ. We show that Σ◦ satisfies the condition (*) for the profile τ in Theorem

A.3. Denote by b the behavioral strategy profile that is equivalent to τ . Since τ is completely

mixed, every node of Γ is reached with positive probability under b.

For each player n, let Xn be the set of nodes where he moves.

• Let Vn ⊂ Xn comprise those nodes x for which P ◦(x) = 0 and the last node y

preceding x such that P ◦(y) > 0 belongs to player m.

Each node x ∈ Vn is excluded by player m’s equilibrium action at an earlier node

y ∈ Xm that is on the equilibrium path.

Let Wn = Xn\Vn and let W 0
n be the set of x ∈ Xn such that P ◦(x) > 0. Obviously,

W 0
n ⊆ Wn.

• Let Qn ⊆ Sn be the set of pure strategies s of player n such that for each x ∈ W 0
n , s

plays the unique action associated with Σ◦ at x.

Let Rn = Sn\Qn.

Qn is a nonempty set, while Rn is nonempty iff there exists a node in W 0
n where

player n has at least two actions available.

The following Claim follows readily from our definitions.

Claim B.2. Suppose x /∈ W 0
n .

(1) If x belongs to Vn then every node y that belongs to Xm (resp. Xn) and that

precedes or succeeds x belongs to Wm (resp. Vn ∪W 0
n). Moreover, x is enabled only

by strategies in Rm and it is enabled by some strategy in Qn.

(2) If x belongs to Wn then any node y in Xm (resp. Xn) and that precedes or succeeds

x belongs to Vm ∪W 0
m (resp. Wn). Moreover, x is enabled by some strategy in Qm

and is enabled only by strategies in Rn.

The support of every equilibrium in Σ◦ is contained in Qm ×Qn. Also, for each n, every

strategy in Qn is a best reply against every equilibrium in Σ◦, since the strategies in Qn

differ only at nodes that are in Vn (which are excluded by the equilibria in Σ◦, by point (1)

of Claim B.2) or in Wn\W 0
n (which are excluded by all strategies in Qn by point (2) of Claim

B.2).

For each player n, fix some pure strategy s̄n ∈ Qn.
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• Let q̄n be a mixed strategy equivalent to the following behavioral strategy: at each

node x ∈ Vn player n plays according to bn, and at each node x ∈ Wn player n plays

according to s̄n. Obviously, q̄n is a mixture over strategies in Qn.11

• In case Rn is nonempty, let r̄n be a mixed strategy equivalent to the following behav-

ioral strategy: at each node x ∈ Vn player n plays according to s̄n, and at each node

x ∈ Wn player n plays according to bn. r̄n is a mixture over strategies in Rn and Qn

that assigns a positive probability to some strategy in Rn.

The following Claim also follows readily from the previous Claim and from our definitions.

Claim B.3. r̄n enables each node in Vm and Wn, and q̄n enables each node in Wm and Vn.

For each δ ∈ [0, 1] and sn ∈ Qn, define:

• qn(sn, δ) is the mixed strategy that plays sn with probability 1 − δ and q̄n with

probability δ. qn(sn, δ), like q̄n, is a mixture over strategies in Qn.

Let Qn(δ) be the collection of these mixed strategies.

• In case Rn is nonempty, rn(sn, δ) is the mixed strategy that plays sn with probability

1 − δ and r̄n with probability δ. Like r̄n, rn(sn, δ) assigns a positive probability to

some strategy in Rn. And since sn ∈ Qn, the conditional distribution over Rn that

is induced by rn(sn, δ) is the same as that induced by r̄n.

Let Rn(δ) be the collection of these mixed strategies.

In sum,

qn(sn, δ) = [1− δ]sn + δq̄n and rn(sn, δ) = [1− δ]sn + δr̄n

where the contingency table for the choices by q̄n and r̄n at nodes x ∈ Xn is:

x ∈ Vn x ∈ Wn

q̄n[x] = bn[x] s̄n[x]
r̄n[x] = s̄n[x] bn[x]

Let G(δ) be the equivalent game obtained by adding for each player n all strategies in

Qn(δ) ∪ Rn(δ) as redundant pure strategies. Let S(δ) and Σ(δ) be the spaces of pure and

mixed strategy profiles for the game G(δ), and let In = |Sn(δ)|. If Rn is nonempty, In =

|Sn|+ 2× |Qn|; otherwise, In = 2× |Sn|.
By assumption, for each δ there exists a proper equilibrium σ̃1(δ) of G(δ) whose equivalent

profile in Σ, call it σ1(δ), is in Σ◦. By [2, Proposition 5] there exists for each player n an

LPS Kn(δ) ≡ (σ̃1
n(δ), . . . , σ̃

In(δ)
n (δ)) over S(δ) with full support, where In(δ) 6 In, such that

the LPS profile (K1(δ),K2(δ)) respects preferences; viz., if against Km(δ) a pure strategy sn

11If one picks a different s̄n to define q̄n then one obtains an equivalent mixed strategy, since all strategies
in Qn agree at nodes in W 0

n and, by Claim B.2, exclude those in Wn\W 0
n .
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for player n in G(δ) is a better reply than another tn, then in Kn(δ), sn is infinitely more

likely than tn.12 (In particular, σ̃1
n(δ) is a best reply against Km(δ).) Since In is independent

of δ, by replacing Kn(δ) with the LPS (σ̃1
n(δ), σ̃1

n(δ), . . . , σ̃1
n(δ), σ̃2

n(δ), . . . , σ̃
In(δ)
n (δ)) where we

insert In − In(δ) copies of σ̃1
n(δ) before σ̃2

n(δ), we can assume that Kn(δ) has In levels, i.e.

In(δ) = In. Let Ln(δ) = (σ1
n(δ), . . . , σIn

n (δ)) be the corresponding LPS over Sn induced by

Kn(δ); viz., σi
n(δ) is the strategy in Σn equivalent to σ̃i

n(δ). Obviously for σn, σ
′
n ∈ Σn, σn

is a better reply against Km(δ) than σ′n iff it is a better reply against Lm(δ) than σ′n. In

particular, σ1
n(δ) is a best reply against Km(δ) and hence also against Lm(δ).

Claim B.4. In Ln(δ) every strategy qn ∈ Qn is infinitely more likely than every strategy

rn ∈ Rn.

Proof of Claim. Fix a strategy qn ∈ Qn. Because σ1
m(δ) belongs to Σ◦, qn is a best reply to

σ1
m(δ). Let i be the first level of Ln(δ) that assigns qn a positive probability. The first level i′

of Kn(δ) that assigns a positive probability to qn is such that i′ > i. (It is possible that i′ > i,

since a duplicate strategy qn(sn, δ) that has qn in its support might be assigned a positive

probability by level i of Kn(δ), thus accounting for the presence of qn in the support of σi
n(δ).)

Then, since Kn(δ) respects preferences, every strategy in the support of σ̃j
n(δ) (and hence of

σj
n(δ)) for j 6 i is a best reply to σ1

m(δ). As remarked above, σ1
m(δ) is a best reply against

Ln(δ). Therefore, for sufficiently small ε > 0 the strategy profile σ(δ, ε) = (σ1
m(δ), σn(δ, ε)) is

an equilibrium of G, where σn(δ, ε) = (ε + · · ·+ εi)
−1 ∑i

j=1 εjσj
n(δ). Because Γ is a generic

extensive-form game, the outcome induced by σ(δ, ε) is the same for all ε, viz., they all induce

P ◦. Therefore, all strategies in the support of σj
n(δ) for j 6 i choose the unique equilibrium

action at each node x ∈ W 0
n . Thus these strategies are all in Qn, and those in Rn = Sn\Qn

are only in the supports of strategies in levels j > i of the LPS. ¤

Now choose a sequence δ(k) converging to zero as k increases and let (K1(δ(k)),K2(δ(k)))

and (L1(δ(k)),L2(δ(k))) be the corresponding sequence of LPS profiles where the former

profile respects preferences and (σ1
1(δ(k)), σ1

2(δ(k))) ∈ Σ◦. Passing to a subsequence of

the δ(k)’s if necessary, [2, Proposition 2] implies the following. There exists for each n

and each 1 6 i 6 In, a positive integer J i
n, an LPS Li

n ≡ (σi1
n , . . . , σ

iJi
n

n ) over Sn, and a

sequence (µ1
n(k), . . . , µ

Ji
n−1

n (k)) ∈ (0, 1)Ji
n−1 converging to zero such that, for each k, σi

n(δ(k))

is expressible as the nested combination

σi
n(δ(k)) = (1− µ1

n(k))σi1
n + µ1

n(k)[(1− µ2
n(k))σi2

n + µ2
n(k)[· · ·+ µJi

n−1
n (k)σiJi

n
n ] · · · ] .

12Recall from Section 4 that by a better reply we mean a lexicographically strict better reply.
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Thus we obtain an LPS Ln = (σij
n ), 1 6 i 6 In, 1 6 j 6 J i

n, where the ordering is the

following: ij < i′j′ (that is, level ij is infinitely more likely than level i′j′) if i < i′ or i = i′

and j < j′.

The strategy profile where each player n plays σ11
n , the first level of his LPS, is in Σ◦ as it

is the limit of the sequence of profiles where each player n plays σ1
n(δ(k)). Because each level

i of Ln(δ) is a nested combination of the LPS Li
n, a strategy σn is a better reply against Lm

than another strategy σ′n iff for all large k it is a better reply against Lm(δ(k)) than σ′n is.

In particular, strategies in the support of σ11
n , which are obviously in the support of σ1

n(δ(k))

for all k, are best replies against Lm. Also, the nested property for Ln along with Claim B.4

immediately implies:

Claim B.5. In Ln every strategy in Qn is infinitely more likely than every strategy in Rn.

In case Rn is nonempty, let i1nj1
n be the first level of Ln that assigns a positive probability

to some strategy in Rn and let σ
i1nj1

n
n (Rn) be the conditional distribution over Rn under σ

i1nj1
n

n .

For each k, since each level i of Ln(δ(k)) is a nested combination of levels of Li
n, i1n is the

first level of Ln(δ(k)) that assigns positive probability to a strategy in Rn. Moreover, letting

σ
i1n
n (δ(k), Rn) be the conditional distribution over Rn induced by σ

i1n
n , we have that σ

i1nj1
n

n (Rn)

is limit of σ
i1n
n (δ(k), Rn). We will now compute σ

i1nj1
n

n (Rn) using the sequence Kn(δ(k)).

Clearly, i1n is the first level of Kn(δ(k)) that assigns positive probability to a strategy in

either Rn or Rn(δ). (Recall that each strategy in Rn(δ) assigns a positive probability to

some strategy in Rn.) Let α1
nk (resp. β1

nk) be the sum of the probabilities of the strategies

in Rn(δ(k)) (resp. Rn) under σ̃
i1n
n (δ(k)). Then α1(δ(k)) + β1(δ(k)) > 0 since otherwise the

strategies in Rn would be assigned zero probability by σ
i1n
n (δ(k)). Observe that the probability

σ
i1n
n,s(δ(k)) of a strategy s ∈ Rn under σ

i1n
n (δ(k)) equals σ̃

i1n
n,s(δ(k)) + δ(k)α1

nkr̄n,s. Define a

strategy σ∗nk(Rn) ∈ Σn as follows. If β1
nk > 0, then let σ∗nk(Rn) be the mixed strategy in Σn

that is obtained by taking the conditional distribution over Rn that is induced by σ̃
i1n
n (δ(k)):

that is, the probabilities of strategies in Qn under σ∗nk(Rn) are zero, while that of a strategy

rn ∈ Rn is (β1
nk)

−1
σ̃

i1n
n,rn(δ(k)). If β1

nk = 0, let σ∗nk(Rnk) be an arbitrary mixed strategy in

Σn whose support in contained in Rn. Let R∗
nk be the support of σ∗nk(Rn). By construction,

R∗
nk is contained in Rn, and in case β1

nk 6= 0 it equals the set of strategies that are assigned

a positive probability by level i1n of Kn(δ(k)). Let µ∗nk = δ(k)α1
nk/[δ(k)α1

nk + β1
nk]. We now

have that σ
i1n
n (δ(k), Rn) is given by the conditional distribution over Rn that is induced by

[1− µ∗nk]σ
∗
n(Rn) + µ∗nkr̄n.
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By going to an appropriate subsequence of δ(k), µ∗nk converges to some µ∗n and σ∗n(Rn)

converges to some strategy σ∗n(Rn) with support, say, R∗
n. Because the support of σ∗n(Rn)

and r̄n contain strategies in Rn, σ
i1nj1

n
n (Rn) is now the conditional distribution over Rn that

is induced by (1− µ∗n)σ∗n(Rn) + µ∗nr̄n.

Say that a pure strategy sn of player n is conditionally optimal against Lm if at every

node x ∈ Xn that sn does not exclude the action prescribed by sn at x is optimal against

the first level of Lm that does not exclude x.

Claim B.6. Suppose Rn is nonempty. (1) If µ∗n 6= 1 then every strategy in R∗
n is conditionally

optimal against Lm. (2) µ∗n 6= 0.

Proof of Claim. Suppose µ∗n 6= 1. Fix a pure strategy rn ∈ Rn that is not conditionally

optimal against Lm. We show that rn /∈ R∗
n. R∗

n is the support of σ∗n(Rn), which is defined

as the limit of σ∗nk(Rn). Therefore, it is sufficient to show that rn does not belong to the

support R∗
nk of σ∗n(Rn) for all large k. Since µ∗n 6= 1, β1

nk 6= 0 for all large k. As remarked

above, this implies that for each such k, R∗
nk is the set of strategies that are assigned a

positive probability by level i1n of Kn(δ(k)). To show that for large k, rn /∈ R∗
nk, i.e. that it is

assigned probability zero by σ̃
i1n
n (δ(k)), it is sufficient to show that for large enough k there

is a strategy r′n ∈ Rn ∪ Rn(δ(k)) that is a better reply against Lm(δ(k)). Indeed, the result

then follows from the fact that Kn(δ(k)) respects preferences and that i1n is the first level of

Kn(δ(k)) that assigns positive probability to some strategy in Rn ∪Rn(δ(k)).

Let x be a node of player n that rn does not exclude and where it is not conditionally

optimal. Consider first the case P ◦(x) > 0. Then σ11
m is the first level of Lm that does not

exclude x. It cannot be the case that rn chooses the equilibrium action at x since that choice

is optimal. Thus rn chooses a non-equilibrium action at x that is not optimal against σ11
m at

x. Pick sn ∈ Qn that is in the support of σ11
n . sn is a best reply against Lm, while rn is not

even a best reply against σ11
m . Therefore, there exists δ0 > 0 such that rn(sn, δ0) is a better

reply against Lm than rn. Hence, there exists k0 such that rn(sn, δ0) is a better reply against

Lm(δ(k)) for k > k0. Because sn is a best reply against Lm, there exists k1 > k0 such that

sn is a best reply against Lm(δ(k)) for k > k1. Consequently, for each δ < δ0, and k > k1,

rn(sn, δ), which is a convex combination of sn and rn(sn, δ0), is a weakly better reply against

Lm(δ(k)) than rn(sn, δ0). In particular, for k such that k > k1 and δ(k) < δ0, rn(sn, δ(k)) is

a weakly better reply against Lm(δ(k)) than rn(sn, δ0) and therefore a better reply than rn.

Thus rn /∈ R∗
nk for large k.

Now suppose P ◦(x) = 0. Let r′n be a strategy that differs from rn only in that it prescribes

an optimal continuation at x. Obviously r′n is in Rn as well. Moreover, against Lm it is now
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a better reply than rn. Hence for all large k, r′n is a better reply against Lm(δ(k)) than rn.

Again rn is not in R∗
nk for large k.

To finish the proof of the Claim, it remains to show that µ∗n > 0. Suppose to the contrary

that µ∗n = 0. Then σ
i1nj1

n
n (Rn) = σ∗n(Rn) and thus by (1) all strategies that belong to Rn and

also to the support of σ
i1nj1

n
n are optimal against σ11

m . Any other strategy that appears in the

support of a level ij that equals or precedes i1nj
1
n in player n’s LPS belongs to Qn and is

also optimal against σ11
m . Also, σ11

m is a best reply to Ln. Hence, for all small ε, the strategy

profile (σ11
m , σn(ε)) is an equilibrium of G, where σn(ε) = (

∑
ij6i1nj1

n
εd(ij))

−1 ∑
ij6i1nj1

n
εd(ij)σij

n ,

with d(ij) =
∑i−1

i′=1 J i′
n + j. σn(ε) assigns positive probability to strategies in Rn, which by

definition choose a non-equilibrium action at some node on the equilibrium path that they

do not exclude. Hence for ε > 0, (σ11
m , σn(ε)) induces an outcome different from P ◦, which

is impossible. Therefore, µ∗n > 0. ¤

Claim B.7. For x ∈ Vn, the first level of Lm(δ) that enables it is i1mj1
m. Moreover, the contin-

uation strategy in Γ(x) that σ
i1mj1

m
m induces is the same as that induced by (1−µ∗m)σ∗m(R∗

m)+

µ∗mr̄m.

Proof of Claim. By Claim B.2, any strategy of m that enables x belongs to Rm—in partic-

ular, Rm is nonempty and i1mj1
m is well defined. By the definition of i1mj1

m, therefore, x is

not enabled by ij < i1mj1
m. Again because x is enabled only by strategies in Rm, and also

because σ
i1mj1

m
m (Rm) is the conditional distribution induced by (1− µ∗m)σ∗m(R∗

m) + µ∗mr̄m, the

proof is complete if we show that x is enabled by (1− µ∗m)σ∗m(R∗
m) + µ∗mr̄m. This last point

follows from Claim B.3 and point (2) of Claim B.6. ¤

Let Q+
n be the subset of strategies in Qn that are conditionally optimal against Lm. Let

i0nj0
n be the first level ij with the following property: if Qn = Q+

n , then every strategy in

Qn is assigned a positive probability by some level i′j′ 6 ij; and if Qn 6= Q+
n , then level ij

assigns a positive probability to some s ∈ Qn\Q+
n . When Rn is nonempty, i0nj0

n < i1nj1
n by

Claim B.5. Moreover, if Qn 6= Q+
n , i0nj

0
n > 11: σ11

n assigns probability only to best replies

against Lm, and any strategy in Qn\Q+
n is obviously not a best reply against Lm.

Claim B.8. Suppose Qn 6= Q+
n . Then q̄n assigns positive probability to some strategy in

Qn\Q+
n .

Proof of Claim. Let sn ∈ Qn\Q+
n . Let x ∈ Xn be a node that sn enables but where it not

conditionally optimal. Obviously P ◦(x) = 0, since sn prescribes only the equilibrium action

at nodes on the equilibrium path. By Claim B.2, we therefore have that x ∈ Vn. The result
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now follows from the fact that q̄n enables each node in Vn (Claim B.3) and is equivalent to

a behavioral strategy that mixes over all the actions at each such node. ¤

Suppose Qn 6= Q+
n . Let Q0

n be the set of qn ∈ Qn assigned zero probability by levels

ij < i0nj0
n. By definition there exists qn that belongs to Q0

n\Q+
n and that is assigned positive

probability by level i0nj
0
n. Therefore, σ

i0nj0
n

n induces a well-defined conditional distribution over

Q0
n, call it σ

i0nj0
n

n (Q0
n). To compute this conditional distribution, we mimic what we did for

Rn above. (The only difference between what we present in the next paragraph and their

counterparts from before is that we use Q0
n instead of Rn and q̄n instead of r̄n.)

For each k, level i0n is the first level of Ln(δ(k)) that assigns a positive probability to

some strategy in Q0
n. Let σ

i0n
n (δ(k), Q0

n) be the conditional distribution over Q0
n that is

induced by σ
i0n
n (δ(k)). Using the above Claim, i0n is also the first level of Kn(δ(k)) to assign a

positive probability to a strategy in Q0
n or in Qn(δ(k)). As with Rn, there exist λ∗nk ∈ [0, 1]

and a mixed strategy σ∗nk(Q
0
n) with support, say, Q∗

nk ⊆ Q0
n such that σ

i0n
n (δ(k), Q0

n) is the

conditional distribution over Q0
n induced by (1 − λ∗nk)σ

∗
nk(Q

0
n) + λ∗nkq̄n. If λ∗nk 6= 1 then

Q∗
nk consists of strategies sn ∈ Q0

n assigned a positive probability by σ̃
i1nj1

n
n . Going to the

limit produces the strategy [1−λ∗n]σ∗n(Q0
n) + λ∗nq̄n, whose conditional distribution over Q0

n is

σ
i0nj0

n
n (Q0

n). Denote by Q∗
n the support of σ∗n(Q0

n).

We want to establish an analogue of the optimality property of R∗
n in Claim B.6 for Q∗

n.

Before doing so, we need a preliminary Claim.

Claim B.9. All strategies in Qn are equally good replies against any strategy for player m

whose support is contained in Qm.

Proof of Claim. The result follows from the following three observations. All strategies in

Qn agree at each x ∈ W 0
n ; they exclude nodes in Wn\W 0

n , by point 2 of Claim B.2; finally a

node x ∈ Vn is excluded by every strategy in Qm by point 1 of Claim B.2. ¤

Claim B.10. Suppose Qn 6= Q+
n . (1) If λ∗n 6= 1, each strategy in Q∗

n is conditionally optimal

against Lm, i.e. it belongs to Q+
n . (2) λ∗n 6= 0.

Proof of Claim. Suppose qn ∈ Qn\Q+
n . We show that qn /∈ Q∗

n. As in the proof of statement

(1) of Claim B.6, it sufficient to show that qn /∈ Q∗
nk, i.e. it is assigned zero probability

by σ̃
i0n
n (δ(k)), for large k. We claim that we are done if we can show that there exists

sn ∈ Qn such that qn(sn, δ(k)) is a better reply against Km(δ(k)) for large k. Indeed, if

there does exist such an sn, then letting i(k) and i(qn, k) be, resp., the first levels where

qn(sn, δ(k)) and qn are assigned positive probability by Kn(δ(k)), we have i(k) < i(qn, k) for
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large k, because Kn(δ(k)) respects preferences. By Claim B.8, level i(k) of Ln(δ(k)) assigns

a positive probability to some some q′n ∈ Qn\Q+
n . Hence, i0n 6 i(k) < i(qn, δ(k)) and qn is

assigned zero probability by σ̃
i0n
n . Thus, it is sufficient to show the existence of sn ∈ Qn such

that qn(sn, δ(k)) is a better reply against Km(δ(k)) for large k.

Since qn is not conditionally optimal against Lm, there exists x ∈ Xn that qn enables and

where it is not optimal against the first level of Lm that enables it. Clearly, x /∈ W 0
n , since

qn chooses the equilibrium action at each node on the equilibrium path. As qn excludes each

node in Wn\W 0
n , x ∈ Vn and by Claim B.7, x is enabled by level i1mj1

m. Let q′n be a strategy

that agrees with qn everywhere except that in the subgame at x, it prescribes a continuation

strategy that is optimal against σ
i1mj1

m
m . Obviously, q′n belongs to Qn and is a better reply to

level i1mj1
m of Lm than qn. Pick sn in the support of σ11

n . Because sn ∈ Qn, sn and q′n are

equally good replies against every level ij < i1mj1
m of Lm, by Claim B.9. Because sn is a best

reply to Lm, it is at least as good a reply as q′n against level i1mj1
m. Hence it is a better reply

to σ
i1mj1

m
m than qn. There exists δ0 > 0 such that qn(sn, δ0) is a better reply to σ

i1mj1
m

m than

qn. Since the support of qn(sn, δ0) is contained in Qn, again using Claim B.9, qn(sn, δ0) is a

better reply to Lm(δ) than qn. Hence there exists k0 such that for all k > k0, qn(sn, δ0) is

a better reply to Lm(δ(k)) than qn. Because σn is a best reply to Lm, there exists k1 > k0

such that sn is a weakly better reply to Lm(δ(k) than qn(sn, δ0) for all k > k1. Hence for all

k such that δ(k) 6 δ0 and k > k1, qn(sn, δ(k)) is a better reply to Lk(δ(k)) than qn, which

completes the proof of (1).

We now prove point (2). Suppose λ∗n 6= 1. Then by point (1) every strategy in the support

of σ∗n(Q0
n) is in Q+

n . Since σ
i0nj0

n
n assigns positive probability to some strategy in Q0

n\Q+
n , it

must be that λ∗n 6= 0. ¤

Claim B.11. Let x ∈ Wn. Then x is enabled by σij
m for some ij 6 i0mj0

m. Moreover, if

Qm 6= Q+
m and x is not enabled by level ij < i0mj0

m, then the continuation strategy that σ
i1mj1

m
m

induces in Γ(x) is the same as that induced by (1− λ∗m)σ∗m(Q0
m) + λ∗mq̄m.

Proof of Claim. By Claim B.2, there is a strategy sm in Qm that enables x. Suppose Qm =

Q+
m. By the definition of i0mj0

m, sm is assigned positive probability by some level ij 6 i0mj0
m

of Lm, which then enables x.

Suppose now that Qm 6= Q+
m and x is not enabled by any level ij < i0mj0

m. Then by the

definition of Q0
m, the only strategies in Qm that enable x belong to Q0

m. The conditional

distribution σ
i0mj0

m
m (Q0

m) over Q0
m induced by level i0mj0

m is that induced by λ∗mq̄m + (1 −
λ∗m)σ∗m(Q0

m). Thus, to complete the proof it is sufficient to show that λ∗mq̄m+(1−λ∗m)σ∗m(Q0
m)

enables x. This last follows from point (2) of Claim B.10 and Claim B.3. ¤
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Claim B.12. For each n there exists ν∗n ∈ (0, 1] and σ∗n ∈ Σn such that, letting σn =

(1− ν∗n)σ∗n + ν∗nτn, we have the following properties:

(1) If νn 6= 1 then σ∗n is conditionally optimal against Lm.

(2) For each x ∈ Vm, σn enables x and prescribes the same continuation strategy in Γ(x)

as level i1nj1
n of Ln.

(3) If Qn 6= Q+
n then for each x ∈ Wm that is not enabled by ij < i0nj0

n, σn enables x and

prescribes the same continuation strategy in Γ(x) as level i0nj0
n.

Proof of Claim. Suppose first that Qn = Q+
n and Rn is empty, then let σn = τn. (ν∗n = 1 and

the choice of σ∗n is irrelevant.) Points (1) and (3) of the Claim holds trivially. As for point

(2), if Rn is empty, Vm is empty, by Claim B.2, and hence it too holds trivially.

Suppose now that Qn = Q+
n and Rn is nonempty. Then, let σ∗n = σ∗n(Rn) and ν∗n = µ∗n.

Point (1) of this Claim follows from point (1) of Claim B.6 and point (3) holds trivially. As for

point (2) of this Claim, remark first that by Claim B.7, the continuation strategy for player n

Γ(x) that is prescribed by σ
i1nj1

n
n is that given by (1−µ∗n)σ∗n(Rn)+µ∗nr̄n. Since x ∈ Vm, by Claim

B.2, every node of n that precedes or succeeds x belongs to Wn. r̄n and τn are equivalent

to behavioral strategies that choose the same mixture at each node in Wn. Therefore, σn

prescribes the continuation strategy in the subgame at x as (1− µ∗n)σ∗n(Rn) + µ∗nr̄n.

Finally, suppose now that Qn 6= Q+
n . Let V 0

n be the set of initial vertices of Vn, viz., V 0
n

is the set of nodes in Vn that are not preceded by any other vertex in Vn. By the definition

of V 0
n and Claim B.2, nodes in Xn that precede a node in V 0

n belong to W 0
n . Also, V 0

n is

nonempty. Indeed, if it is empty then Vn is empty; but then Qn = Q+
n because all strategies

in Qn prescribe the equilibrium action at each node in W 0
n and exclude all nodes in Wn\W 0

n .

Thus, V 0
n is nonempty. For v ∈ V 0

n , define ν∗nv to be the probability that τn enables v, i.e. ν∗nv

is the total probability under τn of the set of pure strategies that enable v. For each v ∈ V 0
n ,

define σ∗nv to be the mixed strategy that is equivalent to the following behavioral strategy:

in the subgame Γ(v) play according to σ∗n(Qn); elsewhere play according to σ11
n . σ∗nv is a

mixture over strategies in Qn and if λ∗n 6= 1 then σ∗nv is conditionally optimal against Lm,

since strategies σ∗n(Qn) and σ11
n are.

In case Rn is empty, define σ̂n to be σ11
n and let µ̂∗n = 1. In case Rn is nonempty, let µ̂∗n = µ∗n

and define σ̂∗n to be the mixed strategy that is equivalent to following behavioral strategy:

at each node x ∈ Wn, play according to σ∗n(Rn); at each node x ∈ Vn, play according to σ11
n .

Obviously, when µ̂∗n 6= 1, σ̂n is also conditionally optimal against Lm.
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Now let

σn = (λ∗n +
∑

v∈V 0
n

(1− λ∗n)µ̂∗nν∗nv)
−1

((1− µ̂∗n)λ∗nσ̂n +
∑

v∈V 0
n

(1− λ∗n)µ̂∗nν∗nvσ
∗
nv + λ∗nµ̂

∗
nτn) .

and let

ν∗n =
λ∗nµ̂

∗
n

λ∗n +
∑

v∈V 0
n
(1− λ∗n)µ̂∗nν∗nv

.

By point (2) of Claims B.6 and B.10, λ∗n 6= 0 6= µ̂∗n. Thus, σn is a well defined strategy and

0 < ν∗n 6 1. If ν∗n 6= 1, let

σ∗n = (λ∗n(1− µ̂∗n) +
∑

v∈V 0
n

(1− λ∗n)µ̂∗nν
∗
nv)

−1
((1− µ̂∗n)λ∗nσ̂n +

∑

v∈V 0
n

(1− λ∗n)µ̂∗nν∗nvσ
∗
nv)

and otherwise let it be an arbitrary strategy. Therefore σn = (1 − ν∗n)σ∗n + ν∗nτn. Suppose

ν∗n 6= 1. Then either λ∗n 6= 1 or µ̂∗n 6= 1. If λ∗n 6= 1 then each σ∗nv is optimal against Lm. And

if µ̂∗n 6= 1 then σ̂n is optimal against Lm. Therefore, if ν∗n 6= 1 then σ∗n is optimal against

Lm. To prove point (2) we argue as follows. Suppose x ∈ Vn. By Claim B.2, x is enabled

only by strategies in Rn. (In particular if Rn is nonempty, σ̂n = σ∗n(Rn) and µ̂∗n = µ∗n.) The

only “components” of σn that enable x are τn and σ̂n. Therefore, the continuation strategy

in Γ(x) under σn is that given (1− µ̂∗n)σ̂n + µ̂∗nτn. As before, any node of n that precedes or

succeeds x belongs to Wm. σ̂n agrees with σ∗n(Rn) at each node in Wn while τn agrees with

r̄n at each such node. Thus the continuation strategy in Γ(x) that is induced by σn is the

same as that given by (1− µ∗n)σ∗n(Rn) + µ∗nr̄n. The result now follows from Claim B.7.

It remains to prove point (3). Let x ∈ Wm be a node such that the first level of Ln that

enables it is i0nj
0
n. Since Qn 6= Q+

n , i0nj
0
n > 11. There must exist v ∈ V 0

n that precedes

it: otherwise, by Claim B.2, the only nodes preceding x belong to W 0
n and x is enabled

by σ11
n . By construction, the strategies σ∗nv′ for v′ 6= v and σ̂∗n(Rn) choose the continuation

strategy prescribed by σ11
n in the subgame Γ(v). Because σ11

n does not enable x, clearly

these strategies do not either. Therefore, the only “components” of σn that enable x are

σ∗nv and τn. Thus, the continuation action prescribed by σn in Γ(x) is that prescribed by

the conditional distribution [(1− λ∗n)µ̂∗nν∗nv + λ∗nµ̂∗n]−1((1−λ∗n)µ̂∗nν∗nvσ
∗
nv +λ∗nµ̂

∗
nτn), where the

factor µ̂∗n cancels out. In the subgame Γ(v), qn prescribes the same continuation as τn while

σ∗nv prescribes the same continuation as σ∗n(Q0
n). The probability of enabling v under qn or

σ∗n(Qn) or σ∗nv is 1, whereas the corresponding probability for τn is ν∗nv. Hence it is clear that

σn prescribes the same continuation strategy in Γ(v)—and, therefore, in Γ(x), as x succeeds

v—as does the strategy (1−λ∗n)σ∗n(Qn)+λ∗nqn. Point (3) follows by applying Claim B.11. ¤
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We construct a new LPS Ln as follows. Suppose first that Qn = Q+
n . Ln is obtained by

deleting all levels succeeding i0nj
0
n and adding the mixed strategy σn defined above as the last

level. If Qn 6= Q+
n then i0nj

0
n > 11 so Ln has more than one level. Delete all levels succeeding

i0nj0
n and replace level i0nj

0
n with a mixed strategy σn as defined above.

To finish the proof of the Proposition it remains to show that every strategy in the support

of σ∗n (as defined in the previous Claim) or of a level of Ln before the last is conditionally

optimal against Ln. Point (1) of the above Claim in conjunction with the following Claim

establishes this optimality property.

Claim B.13. A strategy of player n is conditionally optimal against Lm iff it is conditionally

optimal against Lm.

Proof of Claim. We show the following. For each node x ∈ Xn the first level of Lm that does

not exclude x induces the same continuation strategy for m in Γ(x) as the first level of Lm

that does not exclude x.

If x ∈ W 0
n then the first level of Lm enables it and coincides with the first level of Lm. If

x ∈ Vn then by Claim B.7 the first level of Lm that enables it is i1mj1
m and the result follows

in this case by point (2) of the previous Claim. If x ∈ Wn\W 0
n then, by Claim B.11, x is

enabled by some level ij 6 i0mj0
m of Lm. If ij < i0mj0

m or if Qm = Q+
m then x is enabled by

the same level of Lm as that of Lm. Finally, if Qm 6= Q+
m and x is enabled only by level i0mj0

m

of Lm then the result follows from point (3) of the previous Claim. ¤

Appendix C. Signaling Games

This appendix provides a simple proof of a variant of Theorem 4.1 for two-player two-stage

signaling games of the kind depicted in Figure 3 in §2.1. For these games, the strategic-form

and extensive-form perfect equilibria coincide, and if payoffs are generic then they are the

same as the sequential equilibria and all equilibria in each component yield the same outcome.

The extensive form is described by three nonempty finite sets (T, M,A) and the scenario

in which player 1 (the sender) observes some type t ∈ T and then sends a message m ∈ M ;

next, player 2 (the responder) observes only the message m that was sent and based on this

observation chooses an action a ∈ A. The set of pure strategies for the sender is S = MT ,

and for the responder, R = AM . A particular game G is obtained by specifying the players’

payoffs and nature’s probabilities: let the payoff to player n be un(t,m, a) and let πt > 0 be

the prior probability of type t. A generic signaling game has finitely many Nash equilibrium

outcomes. Therefore, in each component of equilibria, the sender has a unique equilibrium

strategy and the indeterminacy in equilibria arises only from multiple actions for the receiver
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following out-of-equilibrium messages from the sender. Cho and Kreps [5] cite and Banks

and Sobel [1, Theorem 3] prove the following characterization.13

Proposition C.1 (Cho and Kreps, Banks and Sobel). For a generic class of signaling games,

an equilibrium component is stable if and only if for each unsent message m and each

probability distribution θ ∈ ∆(T ) there exists in the component a sequential equilibrium

sustained by the sender’s belief µ ∈ ∆(T )M such that µ(·|m) is in the convex hull of θ and

∆(Tm), where Tm is the subset of types (if any) indifferent between sending m and using an

equilibrium strategy. [That is, Tm = {t | ∑a∈A u1(t,m, a)γ(a|m) = u◦1(t)} where u◦1(t) is the

equilibrium conditional expected payoff of the sender given her type t and the responder’s

strategy γ.]

Such a sequential equilibrium satisfies the sufficient condition for stability in Theorem 4.1

even if it is not induced by a proper equilibrium. The following shows that this anomaly

disappears when Invariance is invoked.

Proposition C.2. Fix an equilibrium component Σ◦ of a generic signaling game. If there

exists an unsent message m and a probability distribution θ ∈ ∆(T ) for which the condition

in Proposition C.1 is violated then there exists an equivalent game, obtained by adding a

single mixed strategy of the original game as an additional pure strategy, with no proper

equilibrium that is equivalent to some equilibrium in Σ◦.

Proof. Fix a message m that is an out-of-equilibrium message in the component Σ◦. Pick

θ ∈ ∆(T ). Choose a pure strategy s ∈ MT in the support of the sender’s equilibrium

strategy in Σ◦. For each type t let stm be the pure strategy that agrees with s except that

stm(t) = m—in stm type t sends the message m while all other types send the message

prescribed by s, which is different from m, since m is an out-of-equilibrium message. Let

σ̂(δ) be the mixed strategy that assigns probability 1 − δ to s and probability δηtm to stm,

where 0 < δ < 1 and ηtm = [θt/πt]/
∑

t∈T [θt/πt]. Thus, δ is the probability of a tremble

in favor of m that with probability ηtm deviates in the event t from s(t) to m. Observe

that conditional on the strategy σ̂(δ) and a tremble in favor of the unsent message m, the

posterior probability that the message m came from type t is

µ(t|m, σ̂(δ)) = πtηtm/p(m|σ̂(δ)) where p(m|σ̂(δ)) =
∑
t∈T

πtηtm .

Consequently, µ(t|m, σ̂(δ)) = θt. Now append σ̂(δ) as a new pure strategy in the strategic

form. This expanded game has the same reduced strategic form as the original game. Assume

13This Proposition can also be proved using the characterization result in Theorem A.3.
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now that for every small δ > 0, there is a proper equilibrium of the expanded game that

induces the same outcome. We show that (m, θ) must satisfy the condition in Proposition

C.1.

Fix δ and let (σδ, ρδ) be a proper equilibrium whose reduced form belongs to Σ◦. By

definition, there exists a sequence of (σδ,ε, ρδ,ε) of ε-proper equilibria converging to (σδ, ρδ).

Let µδ,ε(·|m) be the induced sequence of posteriors on the types conditional on m, and let

γδ,ε ∈ ∆(A) be the induced mixed action of the responder after receiving message m. Let

µδ and γδ be the corresponding limits. Let u◦1(t) be the equilibrium payoff to type t of the

sender in the component Σ◦. Define f δ(t) =
∑

t′ 6=t πt′u
◦
1(t

′) + πtu1(t,m, γδ), which is the

expected payoff to the sender when type t deviates by sending m and the responder replies

with the behavioral strategy γδ. Let T δ = arg maxt f
δ(t), the set of those types with the

smallest disincentive to sending m when the responder uses γδ.

We claim that µδ belongs to the convex hull of θ and ∆(T δ). To see this, consider any

pure strategy s′ of the original game that sends message m for a subset T ′ " T δ of types. Fix

some t′ ∈ T ′\T δ. The strategy s′ does no better against ρδ than the strategy st′m. (Recall

that the strategy st′m is one in which type t′ sends message m while all other types send the

message prescribed by strategy s, which is in the support of the sender’s equilibrium strategy

in Σ◦.) For t∗ ∈ T δ, f(t∗) > f(t′), since t′ /∈ T δ. Therefore, the strategy st∗m does strictly

better than st′m (and s′) against ρδ and hence against ρδ,ε for all small ε. Consequently, the

limit belief µδ is not determined by any pure strategy of the original game where a type not

in T δ sends m. In other words, µδ is determined by the relative probabilities of σ̂(δ) and

those pure strategies for which only types in T δ send message m. Hence, µδ belongs to the

convex hull of θ and ∆(T δ) as asserted.

Let S(δ) be the set of stm such that t ∈ T δ. Observe that by definition all strategies in

S(δ) yield the same payoff against ρδ. Now suppose for some δ that the new pure strategy

σ̂(δ) does strictly better than the pure strategies in S(δ) against ρδ. Then we claim that

the limit belief is θ and the condition in Proposition C.1 holds. By the conclusion from the

last paragraph, to prove this claim it is sufficient to show that for any strategy s′ where a

nonempty subset T̂ δ of T δ of types send message m, σ̂(δ) is a better reply against ρδ than

s′. To prove this last point, consider such a pure strategy s′: the pure strategy stm, where

t ∈ T̂ δ, is at least as good a reply as s′ against ρδ; in turn stm does strictly worse than σ̂(δ)

as it belongs to S(δ). Thus µδ equals θ if σ̂(δ) does strictly better than the pure strategies

in S(δ).

Finally, if for each δ sufficiently small the strategies in S(δ) do at least as well as σ̂(δ)

then their payoffs against ρδ must be arbitrarily close to
∑

t πtu
◦
1(t), since the payoff to σ̂(δ)
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is at least (1 − δ)
∑

t u
◦
1(t) − δK for a positive constant K. Consider now a sequence of δ’s

going to zero such that T δ is constant, call it T ∗, and (µδ, γδ) converges to, say, (µ∗, γ∗).

Then µ∗ belongs to the convex hull of θ and ∆(T ∗). Moreover, for each type t ∈ T ∗,

u1(t,m, γ∗) = u◦1(t). Thus again the condition in Proposition C.1 holds. ¤

For instance, the result of applying the Intuitive Criterion to the examples in Figures 2

and 3 in §2.1 can be obtained by invoking stability, or simply by observing that the preferred

component is the one containing a proper equilibrium.

Cho and Kreps [5, p. 220] conclude that, “if there is an intuitive story to go with the full

strength of stability, it is beyond our powers to offer it here.” Proposition C.2 shows that

if one recognizes that “the full strength of stability” entails Invariance, and that a proper

equilibrium induces a sequential equilibrium in every extensive-form game with the same

strategic form, then the “intuitive story” is less mysterious.
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