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AXIOMATIC JUSTIFICATION OF STABLE EQUILIBRIA

SRIHARI GOVINDAN AND ROBERT WILSON

Abstract. A solution concept that satisfies the axioms of weak invariance and strong backward induction

selects a stable set of a game’s equilibria.

1. Introduction

The theory of games is inherently incomplete because a typical game has multiple equilibria. Nevertheless,

because some equilibria seem more plausible than others, several authors suggest that Nash’s (1950) initial

definition of equilibrium should be strengthened. Hillas and Kohlberg (2002) survey proposals for solution

concepts that select equilibria with additional properties. Among those derived from a game’s normal form

are perfect, proper, and lexicographic equilibria, represented as mixtures of pure strategies. Among those

derived from an extensive form with perfect recall are refinements of sequential equilibria represented as

behavior strategies that allow mixtures of actions at each information set.1 These proposals reflect basic

tensions. The implausibility of some equilibria is most evident in the extensive form where Bayes’ Rule and

backward induction are explicit; hence one can examine the beliefs used to justify behavior at information

sets off the path of equilibrium play. In the normal form, analogous tests of plausibility can be applied to

the hierarchy of beliefs implied by a lexicographic equilibrium.

The crux of the problem is that extensive-form analyses suggest criteria for equilibrium refinements, yet the

theory of individual decisions suggests that a theory of rational behavior in games should depend only on the

normal form. The latter, the orthodox view, is implicit in Nash’s definition. Similarly, Kohlberg and Mertens

(1986)[KM hereafter] show that a proper equilibrium of a normal form induces a sequential equilibrium

in every extensive form having that normal form. Indeed, because the set of sequential equilibria varies

depending on which among many equivalent extensive forms is used, they argue that a refinement should

depend only on the normal form–or better, only on the reduced normal form obtained by deleting pure

strategies that are redundant because their payoffs can be duplicated by mixtures of other pure strategies.2

The orthodox view implements the general principle that a theory of rational behavior should be immune to

presentation effects, such as which extensive form is envisioned, or whether redundant strategies are deleted.

But this principle does not suffice to ensure that beliefs are plausible in an extensive-form description of

Date: February 1, 2004; this version August 29, 2004.
Web file: http://faculty-gsb.stanford.edu/wilson/pdf%20files/AxiomaticStability040829.pdf.
Key words and phrases. game theory, equilibrium selection, stability. JEL subject classification: C72.
This work was funded in part by a grant from the National Science Foundation of the United States.
1Perfect, proper, lexicographic and sequential equilibria are defined by Selten (1975), Myerson (1978), Blume, Brandenberger,

and Dekel (1991), and Kreps and Wilson (1982), respectively.
2Thompson (1952) shows that four elementary transformations enable one of two games in extensive form having the same

normal form and no moves of nature to be transformed into the other. KM add the transformation that coalesces final moves
by nature by replacing them with a terminal node at which the payoffs are the players’ expected payoffs. Thompson uses a
weaker definition of the reduced normal form.
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the game. KM therefore argue that additional criteria should be invoked, such as admissibility, backward

induction, and forward induction.

Kohlberg and Mertens argue further that solution concepts have been too restrictive. Criteria that apply

to a single equilibrium have inherent limitations; therefore, they propose that selection should apply criteria

to sets of equilibria. This is immaterial in an extensive-form game with generic payoffs since a connected set

of equilibria induce the same outcome; that is, these equilibria agree along paths of equilibrium play (Kreps

and Wilson, 1982; Govindan and Wilson, 2001). With this amendment, KM propose a more ambitious

program. Recall that an equilibrium of an extensive form that is perfect with respect to a sequence of

perturbations of behavior strategies induces a sequential equilibrium, and conversely if the game is generic.

KM argue that ideally the goal would be to select equilibria that are “truly perfect” (i.e., essential) in that

they are perturbed slightly by any small perturbation of strategies. Although this ideal is impossible with

a solution concept that selects singletons, it is feasible with one that selects sets of equilibria. KM’s main

result shows the existence of a component of equilibria that is stable. Stability requires a kind of continuity

in that every nearby game has an equilibrium near the component. Although this general result is stated

for payoff perturbations, KM argue that admissibility suggests that the relevant payoff perturbations are

those induced by strategy perturbations, and further, they focus on minimal stable sets. Here, sets that are

minimal among those stable against strategy perturbations are called KM-stable sets.

In this paper we advance KM’s program using a dual approach.

1. Weak Invariance. The orthodox view requires a solution concept to be invariant in that it depends

only on the reduced normal form of a game; i.e., selection and reduction commute. Our first axiom is

weaker. We require that a selected set is equivalent to a superset of a set selected for the inflated game

obtained by adding redundant pure strategies. Here, equivalent means they have the same probability

distributions on the original set of pure strategies.

2. Strong Backward Induction. Accepting the relevance of extensive-form analysis, we require that

behavior strategies in an extensive-form game are quasi-perfect (and therefore sequential). However,

our second axiom enforces KM’s more stringent truly-perfect criterion by requiring further that every

strategy perturbation refines the selected set of equilibria.

Quasi-perfection is a refinement of sequential equilibrium proposed by van Damme (1984). It implements

backward induction by requiring that at each information set a player’s continuation strategy is optimal

against perturbed strategies of other players. This ensures conditional admissibility; that is, a sequential

equilibrium that is quasi-perfect uses a continuation strategy that is not dominated in the remainder of the

game following an information set.

These axioms say that a solution should select sets of equilibria such that, for each extensive form with an

inflated normal form, each perturbation of behaviors should refine a selected set by selecting quasi-perfect

equilibria. The conjunction of these two axioms implies tight restrictions on a solution. Our main theorem

is:

Theorem 1.1. If a solution satisfies Weak Invariance and Strong Backward Induction then each selected

set includes a KM-stable set.

Thus the axioms imply that a selected set is affected only slightly by any perturbation of mixed strategies

of the normal form of the game.
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In their Appendix D, KM establish a comparable result in the special case of an equilibrium that assigns

positive probability to every optimal strategy: if such an equilibrium is perfect with respect to every pertur-

bation of behavior strategies in every extensive form with the same reduced normal form then it is essential.

But such an equilibrium need not exist. Our result differs because we consider sets of equilibria, and we

replace perfect by quasi-perfect. The existence of solutions that satisfy the axioms is established by the fact

that they are satisfied by the stronger concept of stability proposed by Mertens (1989).

Section 2 fixes notation and specifies the axioms. Section 3 proves Theorem 1.1 for 2-player games, where

a simple proof is possible. Section 4 uses an alternative proof for games with N players. Section 5 provides

concluding remarks.

2. Formulation

We consider games with finite sets of players and pure strategies. The normal form of a game is specified

by a payoff function G :
Q
n∈N Sn → RN where N is the set of players and Sn is player n’s set of pure

strategies. Interpret a pure strategy sn as a vertex of player n’s simplex Σn = ∆(Sn) of mixed strategies.

The sets of profiles of pure and mixed strategies are S =
Q
n Sn and Σ =

Q
nΣn. Say that two mixed

strategies of a player are equivalent if for every profile of the other players’ strategies they yield the same

expected payoff for every player. A pure strategy sn of player n is redundant if n has an equivalent mixed

strategy σn 6= sn. The normal form is reduced if no pure strategy is redundant. Say that two games are

equivalent if their reduced normal forms are the same except for labeling of pure strategies.

In general, a solution assigns to each game a collection of nonempty sets of its equilibria, called the selected

sets. However, each equilibrium induces a family of equilibria in equivalent strategies for each inflation of

the game obtained by adding redundant strategies. Therefore, we assume:

Axiom 2.1. Weak Invariance. A selected set is equivalent to a superset of one selected for an inflated

game. Specifically, if Σ◦ is a selected set for the game G◦ and G∗ is an inflation of G◦ then there exists a
selected set Σ∗ for G∗ such that the set of strategies in G◦ that are equivalent to those in Σ∗ is included in
Σ◦.

To each game in normal form we associate those games in extensive form with perfect recall that have

that normal form. Each extensive form specifies a disjoint collection H = {Hn | n ∈ N} of the players’
information sets, and for each information set h ∈ Hn it specifies a set An(h) of possible actions by n at h.
In its normal form the set of pure strategies of player n is Sn = {sn : Hn → ∪h∈HnAn(h) | sn(h) ∈ An(h)}.
The projection of Sn onto h and n’s information sets that follow h is denoted Sn|h; that is, Sn|h is the
set of n’s continuation strategies from h. Let Sn(h) be the set of n’s pure strategies that choose all of n’s

actions necessary to reach h ∈ Hn, and let Sn(a|h) be the subset that choose a ∈ An(h). Then a completely
mixed strategy σn À 0 induces the conditional probability σn(a|h) =

P
sn∈Sn(a|h) σn(sn)/

P
sn∈Sn(h) σn(sn)

of choosing a at h. More generally, a behavior strategy βn ∈
Q
h∈Hn

∆(An(h)) assigns to each information

set h a probability βn(a|h) of action a ∈ An(h) if h is reached. Kuhn (1953) shows that mixed and behavior
strategies are payoff-equivalent in extensive-form games with perfect recall.

Given a game in extensive form, an action perturbation ε : H → (0, 1)2 assigns to each information set a

pair (ε(h), ε̄(h)) of small positive numbers, where 0 < ε(h) 6 ε̄(h). Use {ε} to denote a sequence of action
perturbations that converges to 0.
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Definition 2.2. Quasi-Perfect.3 A sequence {σε} of profiles is {ε}-quasi-perfect if for each a ∈ An, h ∈
Hn, n ∈ N and each action perturbation ε:

1. σεn(a|h) > ε(h), and

2. σεn(a|h) > ε̄(h) only if a is an optimal action at h in reply to σε; i.e., only if sn(h) = a for some

continuation strategy sn ∈ argmaxs∈Sn|h E[Gn | h, s,σε−n].

Suppose that σn(·|h) = limε↓0 σεn(·|h). Then this definition says that at h player n’s continuation strategy
at h assigns a positive conditional probability σn(a|h) > 0 to action a only if a is chosen by a continuation
strategy that is an optimal reply to perturbations (σεn0)n0 6=n of other players’ strategies. Thus when solving
his dynamic programming problem, player n takes account of vanishingly small trembles by other players but

ignores his own trembles later in the game. In particular, this enforces admissibility of continuation strategies

conditional on having reached h. Van Damme (1984) shows that the pair (µ,β) = limε↓0(µε,βε) of belief
and behavior profiles is a sequential equilibrium, where σε induces at h ∈ Hn the conditional probability
µεn(t|h) of node t ∈ h and the behavior βεn(a|h) = σεn(a|h) is player n’s conditional probability of choosing a
at h.

Our second axiom requires that each sequence of action perturbations induces a further selection among

the profiles in a selected set.

Axiom 2.3. Strong Backward Induction. For a game in extensive form with perfect recall for which

the solution selects a set Σ◦ of equilibria, for each sequence {ε} of action perturbations there exists a profile
σ ∈ Σ◦ that is the limit of a convergent subsequence {σε} of {ε}-quasi-perfect profiles.

As the proofs in Sections 3 and 4 show, Theorem 1.1 remains true if Axiom 2.3 is weakened by requiring

action perturbations to satisfy the additional restriction that ε(h) = ε̄(h) for all h. The reason we do not do

so is conceptual. The lower bound ε(·) reflects the requirement that every action of a player is chosen with
positive probability, while ε̄(·) provides the upper bound on the “error probability” of suboptimal actions at
an information set.

We conclude this section by defining stability. In general, a set of equilibria of a game in normal form

is stable if, for any neighborhood of the set, every game obtained from a sufficiently small perturbation

of payoffs has an equilibrium in the neighborhood. However, KM focus on minimal closed sets that are

stable only against those payoff perturbations induced by strategy perturbations. For 0 6 δ 6 1, let

Pδ = {(λnτn)n | (∀ n) 0 6 λn 6 δ, τn ∈ Σn} and let ∂Pδ be the topological boundary of Pδ. For each η ∈ P1,
and n ∈ N , let ηn =

P
s∈Sn ηn(s). Given any η ∈ P1, a perturbed game G(η) is obtained by replacing each

pure strategy sn of player n with ηn + (1− ηn)sn. Thus G(η) is the perturbed game in which the strategy

sets of the players are restricted so that the probability that n plays a strategy s ∈ Sn must be at least ηn(s).
For a vector (λ, τ), we sometimes write G(λ, τ) to denote the perturbed game G((λnτn)n).

Definition 2.4. KM-Stability. A set of equilibria of the game G is KM-stable if it is minimal with respect

to the following property: Σ◦ is a closed set of equilibria of G such that for each ² > 0 there exists δ > 0

such that for each η ∈ Pδ\∂Pδ the perturbed game G(η) has an equilibrium within ² of Σ◦.

3This definition differs from van Damme (1984) in that the upper bound ε̄(·) of the error probability can differ across
information sets. However, it is easily shown that the set of quasi-perfect equilibria as defined by van Damme is the set of all
behavioral-strategy profiles that are limits of sequences of behavioral-strategy profiles induced by sequences of {ε}-quasi-perfect
equilibria as defined here.
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KM show that every game has a KM-stable set of equilibria.

3. 2-Player Games

This section provides a direct proof of Theorem 1.1 for the special case of two players. It is simpler than the

proof of the general case in Section 4 because 2-player games have a linear structure. This structure enables

a generalization–Statement 3 in the following Theorem–of the characterization of KM-stability obtained

by Cho and Kreps (1987) and Banks and Sobel (1987) for the special case of sender-receiver signaling games

with generic payoffs.

Theorem 3.1. [Characterization of Stability] Let G be a 2-player game, and let Σ0 be a closed subset of

Σ. The following statements are equivalent.

1. Σ◦ contains a KM-stable set of the game G.
2. For each τ ∈ Σ\∂Σ there exists sequence σk in Σ converging to σ◦ ∈ Σ◦ and a corresponding sequence

λk in (0, 1)2 converging to the origin, such that σk is an equilibrium of G(λk, τ).

3. For each τ ∈ Σ\∂Σ there exists σ◦ ∈ Σ◦, a profile σ̃ ∈ Σ and 0 < µ 6 1 such that, for each player n
and each pure strategy s ∈ Sn for which µσ◦n(s) + [1− µ]σ̃n(s) > 0, s is an optimal reply for player n
against both σ◦ and the profile σ∗ = µτ + [1− µ]σ̃.

Proof. We prove first that statement 1 implies statement 2. Suppose Σ◦ contains a KM-stable set. Fix

τ ∈ Σ\∂Σ. Then for each positive integer k one can choose a vector λk ∈ (0, 1/k)2 and an equilibrium σk of

G(λk, τ) whose distance from Σ◦ is less than 1/k. Let σ◦ be the limit of a convergent subsequence of σk as
k ↑ ∞. Then σ◦ ∈ Σ◦ satisfies statement 2 for τ .
Next we prove that statement 2 implies statement 3. Fix τ ∈ Σ\∂Σ. Statement 2 assures that there

exists a sequence λk in (0, 1)2 converging to zero and a sequence σk of equilibria of G(λk, τ) converging to an

equilibrium σ◦ in Σ◦. By passing to a subsequence if necessary, we can assume that the set of optimal replies
in G to the strategies σk is the same for all k. Define ς by ςn = [σ

1
n − λ1nτn]/(1− λ1n) where σ

1 is the first

element of the sequence σk. Since σ1 is an equilibrium of G(λ1, τ), ς is an optimal reply to σ1 and hence an

optimal reply to all elements of the sequence, as well as to the limit σ◦. Also, σ◦ must be an optimal reply
to σ1 and σ◦, since the optimal replies are constant along the sequence σk of equilibria of perturbed games,
which converges to σ◦. Let µ = min(λ11,λ

1
2). Define σ̃ by σ̃n = [µ(1− λ1n)ςn+ (λ1n−µ)σ◦n]/λ1n(1−µ) and let

σ∗ = µτ + (1 − µ)σ̃. Then σ∗n = [µσ1n + (λ1n − µ)σ◦n]/λ1n. Therefore, ς and σ◦ are both optimal against σ∗.
For each player n, σ̃n is an average of ςn and σ

◦
n, so it too is optimal against σ

0 and σ∗, which completes the
proof.

Lastly we prove that statement 3 implies statement 1 by showing that Σ◦ satisfies the property in Definition
2.4. Fix an ²-neighborhood of Σ◦. Take a sufficiently fine simplicial subdivision of Σ such that: (i) the union
U of the simplices of this complex that intersect Σ◦ is contained in its ²-neighborhood; and (ii) the best-reply
correspondence is constant over the interior of each simplex. Because G is a two-player game, this simplicial

subdivision can be done such that each simplex is actually a convex polytope. Observe that U is itself a

closed neighborhood of Σ◦. Let Q be the set of all pairs (η,σ) ∈ P1 × Σ such that σ ∈ U and σ is an

equilibrium of G(η); and let Q0 be the set of (0,σ) ∈ Q, i.e., the set of equilibria of the game G that are

contained in U . By property (ii) of the triangulation and because the simplices are convex polytopes, Q

and Q0 are finite unions of polytopes. Triangulate Q such that Q0 is a subcomplex, and take a barycentric
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subdivision so that Q0 becomes a full subcomplex. Since Q is a union of polytopes, both the triangulation

and the projection map p : Q→ P1 can be made piecewise-linear. Let X be the union of simplices of Q that

intersect Q0. Since Q0 is a full subcomplex, the intersection of each simplex of Q with Q0 is a face of the

simplex. Let X0 = X ∩Q0 and let X1 be the union of simplices of X that do not intersect Q0. Given x ∈ X,
there exists a unique simplex K of X that contains x in its interior. Let K0 be the face of K that belongs

to X0; and let K1 be the face of K spanned by the vertices of K that do not belong to K0. K1 is then

contained in X1. We therefore have that x is expressible as a convex combination [1 − α]x0 + αx1, where

xi ∈ Ki for i = 0, 1; moreover, this combination is unique if x 6∈ X0 ∪X1. Finally, since the projection map

p is piecewise affine, we have that p(x) = [1− α]p(x0) + αp(x1) = αp(x1).

Choose δ∗ > 0 such that for each (η,σ) ∈ X1, maxn ηn > δ∗. Such a choice is possible since X1 is a

compact subset of Q that is disjoint from Q0. Fix now δ1, δ2 < δ∗ and τ ∈ Σ. The proof is complete if
we can show that the game G(δ1τ1, δ2τ2) has an equilibrium in U . By statement 3, there exists σ◦ ∈ Σ◦,
σ̃ ∈ Σ and 0 < µ 6 1 such that σ(γ) = ((1− γδn)σ◦n + γδn((1− µ)σ̃n + µτn))n=1,2 is an equilibrium of

G(γµ(δ1τ1, δ2τ2)) for all 0 6 γ 6 1. Because σ(0) = σ◦ ∈ Σ◦ we can choose γ sufficiently small that the
point x = (γµ(δ1τ1, δ2τ2),σ(γ)) belongs to X\(X0 ∪X1); hence there exists a unique α ∈ (0, 1) and xi ∈ Xi

for i = 0, 1 such that x is an α-combination of x0 and x1. As remarked before, p(x) = αp(x1). Therefore,

there exists σ ∈ Σ such that x1 = (γ∗µ(δ1τ1, δ2τ2),σ), where γ∗ = γ/α. Since points in X1 project to

P1\Pδ∗ , γ∗µδn > δ∗ for some n; i.e., γ∗µ > 1 since δn < δ∗ for each n by assumption. Therefore, the point
[1−1/γ∗µ]x0+[1/γ∗µ]x1 corresponds to an equilibrium of the game G(δ1τ1, δ2τ2) that lies in U . This proves
statement 1.

The characterization in statement 3 can be stated equivalently in terms of a lexicographic probability

system [LPS] as in Blume, Brandenberger, and Dekel (1991).

Corollary 3.2. [Lexicographic Characterization] A closed set Σ◦ ⊂ Σ contains a KM-stable set if and only
if for each τ ∈ Σ\∂Σ there exists σ0 ∈ Σ◦, a profile σ̃ ∈ Σ, and for each player n, an LPS Ln = (σ0n, . . . ,σKn

n )

for which σKn
n = [1 − λn]σ̃n + λnτn for some λn ∈ (0, 1], such that for each player n every strategy that is

either: (i) in the support of σk with k < Kn or (ii) in the support of σ̃n if λn < 1, is a lexicographic best

reply to the LPS of the other player.

Proof. The necessity of the condition follows from statement 3. To prove sufficiency, observe that for each

sufficiently small α > 0 the strategy profile σ(α) defined by σn(α) =
PKn

k=0 α
kσkn is an equilibrium for the

perturbed game G(η) where player n’s perturbation vector is ηn = αKnλnτn. Since σ(α) converges to σ
0 as

α goes to zero, the condition of the Corollary implies statement 2 of the Theorem.

Theorem 3.3. [Sufficiency of the Axioms] If a solution satisfies Weak Invariance and Strong Backward

Induction then for any 2-player game a selected set includes a KM-stable subset of its normal form.

Proof. Let G be the normal form of a 2-player game. Suppose that Σ◦ ⊂ Σ is a set selected by a solution
that satisfies Weak Invariance and Strong Backward Induction. Let τ = (τ1, τ2) be any profile in the interior

of Σ. We show that Σ◦ satisfies the condition of Corollary 3.2 for τ . Construct as follows the extensive-form
game Γ with perfect recall that has a normal form that is an inflation of G. In Γ each player n first chooses

whether or not to use the mixed strategy τn, and if not, then which pure strategy in Sn to use. Denote

the two information sets at which n makes these choices by h0n and h
00
n. At neither of these does n have
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any information about the other player’s analogous choices. In Γ the set of pure strategies for player n

is S∗n = {τn} ∪ Sn (after identifying all strategies where n chooses to play τn at his first information set
h0n) and the corresponding simplex of mixed strategies is Σ

∗
n. For each δ > 0 in a sequence converging to

zero, let {ε} be a sequence of action perturbations that require the minimum probability of each action

at h0n to be ε(h0n) = δ, and the maximum probability of suboptimal actions at h00n to be ε̄(h00n) = δ2. By

Weak Invariance, the solution selects a set Σ̃◦ for Γ that is a subset of those strategies equivalent to ones
in Σ◦. By Strong Backward Induction there exists a sequence {σ̃ε} of {ε}-quasi-perfect profiles converging
to some point σ̃0 ∈ Σ̃◦. By Blume, Brandenberger, and Dekel (1991) there exists for each player n: (i) an
LPS L̃n = (σ̃0n, σ̃1n, . . . , σ̃Kn

n ), with members σ̃kn ∈ Σ∗n; and (ii) for each 0 6 k < Kn a sequence of positive
numbers λkn(ε) converging to zero such that each σ̃

ε
n in the sequence is expressible as the nested combination

((1−λ0n(ε))σ̃0n+λ0n((1−λ1n(ε))σ̃2n+λ1n(· · ·+λKn−1
n (ε)σ̃Kn

n ))). Let k∗n be the smallest k for which σ̃kn assigns
positive probability to the “pure” strategy τn of the inflated game.

Claim 3.4. If sn ∈ Sn is assigned a positive probability by some σ̃kn for k 6 k∗n then sn is a lexicographic
best reply to the LPS of the other player.

Proof of Claim. If sn is not a lexicographic best reply to the LPS of the other player then sufficiently far

along the sequence sn is not a best reply against σ̃
ε. Quasi-perfection requires that σ̃εn(τn|h0n) > ε(h0n) = δ

and σ̃εn(sn|h00n) 6 ε̄(h00n) = δ2. Hence limε↓0 σ̃εn(sn|h00n)/σ̃εn(τn|h0n) = 0. Therefore σ̃kn(sn) = 0 for all k 6 k∗n,
which proves the Claim.

From the LPS L̃ construct for each player n an LPS Ln = (σ0n,σ1n, . . . ,σk
∗
n
n ) for the game G by letting σkn

be the mixed strategy in Σn that is equivalent to σ̃
k
n. Since σ̃

0 ∈ Σ̃0, σ0 belongs to Σ0. By the definition
of k∗n and Ln, there exists σ0n ∈ Σn such that σk

∗
n
n = λnτn + [1 − λn]σ

0
n, where λn is the probability of the

strategy τn in σ̃
k∗n
n . By the previous Claim, if a pure strategy is in the support of σk for k < k∗n, or in the

support of σ0n when λn 6= 1, then it is a lexicographic best reply to the LPS L ≡ (L1,L2). Thus L satisfies
the condition of Corollary 3.2 for τ . Hence Σ◦ contains a KM-stable set.

4. N-Player Games

This section provides the proof of Theorem 1.1 for the general case with N players. We begin with

some definitions. For a real-valued analytic function (or more generally a power series) f(t) =
P∞

i=0 ait
i

in a single variable t, the order of f , denoted o(f), is the smallest integer i such that ai 6= 0. The order

of the zero function is +∞. It follows that for any two power series f and g, o(fg) = o(f) + o(g) and

o(f + g) > min(o(f), o(g)). We say that a power series f is positive if ao(f) > 0; thus if f is an analytic

function then f is positive if and only if f(t) is positive for all sufficiently small t > 0. For two analytic

functions f(t) and g(t), say that f > g iff f − g is positive.
By a slight abuse of terminology, we call a function F : [0, t̄] → X, where X is a subset of a Euclidean

space Rl, analytic if there exists an analytic function F 0 : (−δ, δ) → Rl, δ > t̄, such that F 0 agrees with F
on [0, t̄]. For an analytic function F : [0, t̄] → Rk, the order o(F ) of F is mini o(Fi). If σ : [0, t̄] → Σ is an

analytic function then for each pure strategy sn of player n his payoff Gn(σ−n(t), sn) in the game G is an

analytic function as well, since payoff functions are multilinear in mixed strategies. We say that sn is a best
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reply of order k for player n against an analytic function σ if for all s0n ∈ Sn, Gn(σ−n(t), sn)−Gn(σ−n(t), s0n)
is either nonnegative or has order at least k + 1; sn is a best reply to σ if it is a best reply of order ∞.

Lemma 4.1. Suppose σ, τ : [0, t̄]→ Σ are two analytic functions such that o(σ− τ) > k. If sn is not a best
reply of order k against σ then it is not a best reply of order k against τ .

Proof. Let s0n be a pure strategy such that Gn(σ−n(t), sn) −Gn(σ−n(t), s0n) is negative and has order, say,
l 6 k. Let τ 0 = τ − σ. We can then write Gn(τ−n(t), sn)−G(τ−n(t), s0n) as

Gn(σ−n(t), sn)−G(σ−n(t), s0n) +
X
s−n

X
N 0$N\{n}

 Y
n0∈N 0

σn0,sn0 (t)
Y

n00∈N\(N 0∪{n})
τ 0n00,s

n
00 (t)

 [Gn(s−n, sn)−Gn(s−n, s0n)].
The first term in the above expression is negative and has order l by assumption. Therefore, to prove the

result it is enough to show that the order of the double summation is at least k+1: it then follows the whole

expression is negative and has order l. To prove this last statement, using the above mentioned property

of the order of sums of power series, it is sufficient to show that each of the summands in the second term

has order at least k+1. Consider now a summand for a fixed s−n and N 0 $ N\{n}. If both sn and s0n give
the same payoff against s−n then the order of this term is ∞. Otherwise, using the property of the order of
products of functions, the order of this term isX

n0∈N 0
o(σn0,sn0 ) +

X
n00 /∈(N 0∪{n})

o(τ 0n00,s
n
00 ) > k,

where the inequality follows from the following two facts: (i) the order of each σn0,sn0 is at least zero; and

(ii) there exists at least one n00 /∈ (N 0 ∪ {n}) and for any such n00 the order of τ 0n00,s
n
00 is greater than k by

assumption.

We use the following version of a result of Blume, Brandenberger, and Dekel (1991).

Lemma 4.2. If the map τn : [0, t̄]→ Σn is analytic then τn(t) =
PK

k=0 f
k
n(t)τ

k
n , where K 6 |Sn|, each τkn is

in Σn, and each map f
k
n : [0, t̄]→ R+ is analytic.

Proof. Let τ0n = τn(0) and S
0
n = supp τ0n. Define f0n(t) to be mins∈S0n τn,s(t)/τn,s(0); and let τ

1
n(t) =

[1 − f0n(t)]−1[τn(t) − f0n(t)τ0n]. It follows from the definitions of f0n and τ
1
n(t) that the latter is an analytic

function from [0, t̄] into Σn for which there exists s ∈ Sn such that τn,s(t) > 0 while τ1n,s(t) = 0. Moreover,
τn(t) = f0n(t)τ

0
n + [1 − f0n(t)]τ1n(t). Now let τ1n = τ1n(0) and S

1
n = supp τ1n. Define f̂

1
n(t), as before, to be

mins∈S1n τ
1
n,s(t)/τ

1
n,s(0); τ

2
n(t) = [1 − f̂1n(t)]−1[τ1n(t) − f̂1n(t)τ1n]; and f1n(t) = [1 − f0n(t)]f̂1n(t). Then τn(t) =

f0n(t)τ
0
n + f

1
n(t)τ

1
n + [1 − f0n(t)][1 − f1n(t)]τ2n(t). Likewise, we can obtain mixed strategies τ3n, etc., and

corresponding coefficients f3n(t), etc. This process must terminate in a finite number of steps since for each

k there exists an s ∈ Sn for which τkn,s(t) is positive but τ ln,s(t) is zero for all l > k.

Theorem 4.3. If a solution satisfies Weak Invariance and Strong Backward Induction then for any game a

selected set includes a KM-stable subset of its normal form.

Proof. We show that if a solution selects a set Σ◦ ⊂ Σ of profiles that does not contain a KM-stable set for
the normal-form game G then it satisfies Weak Invariance only if it violates Strong Backward Induction.
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Suppose Σ◦ does not contain a KM-stable set. Then there exists ² > 0 such that for each δ ∈ (0, 1) there
exists η ∈ Pδ\∂Pδ such that the perturbed game G(η) does not have an equilibrium in the ²-neighborhood

U of Σ◦. Take a sufficiently fine simplicial subdivision of Σ such that the union X of those simplices in-

tersecting Σ◦ is contained in U . X is then a neighborhood of Σ0. Let A = {(λ, τ) ∈ (0, 1)N × (Σ\∂Σ) |
G(λ, τ) has no equilibrium in X}; then A is nonempty and there exists τ◦ ∈ Σ such that (0, τ◦) is in the
closure of A. Further, since X is semi-algebraic, A too is semi-algebraic. Therefore, by the Nash Curve Selec-

tion Lemma (cf. Bochnak, Coste, and Roy, 1998, Proposition 8.1.13), there exists t̄ > 0 and a semialgebraic,

analytic map t 7→ (λ(t), τ(t)) from [0, t̄] to [0, 1]N × Σ such that (λ(0), τ(0)) = (0, τ◦) and (λ(t), τ(t)) ∈ A
for all t ∈ (0, t̄]. Define the compact semi-algebraic set

Y = {(t,σ) ∈ [0, t̄]×X | (∀ sn ∈ Sn) σn,sn > λn(t)τn,sn(t)} .

Claim 4.4. There exists a positive integer p such that for every analytic function ζ 7→ (t(ζ),σ(ζ)) from an

interval [0, ζ̄] to Y , where t(ζ) is positive, there exists a player n and a pure strategy sn ∈ Sn such that
σ(ζ) > λn(t(ζ))τn,sn(t(ζ)) and sn is not a best reply of order o(t(ζ))p against σ(ζ).

Proof of Claim. Define the maps α,β : Y → R via

α(t,σ) = max
n,sn∈Sn

©
[σn(sn)− λn(t)τn,sn(t)]× max

s0n∈Sn
[Gn(s

0
n,σ−n)−Gn(sn,σ−n)]

ª
and β(t,σ) = t. By construction, α,β > 0 and α−1(0) ⊆ β−1(0). By Lojasiewicz’s inequality (see Bochnak
et al., 1998, Corollary 2.6.7) there exist a positive scalar c and a positive integer p such that cα > βp.

Given an analytic map ζ 7→ (t(ζ),σ(ζ)) as in the statement of the theorem, observe that for each n, sn, s
0
n,

σn,sn(ζ) − λ(t(ζ))τn,sn(t(ζ)) and Gn(s
0
n,σ−n(ζ)) − Gn(sn,σ−n(ζ)) are also analytic in ζ. Therefore there

exists a pair n, sn that achieves the maximum in the definition of α for all small ζ. Then

max
s0n
[Gn(s

0
n,σ−n(ζ))−Gn(sn,σ−n(ζ))] > α(t(ζ),σ(ζ)) > (t(ζ))p/c ,

where the first inequality follows from the fact that σn,sn(ζ)− λn(t(ζ))τn,sn(t(ζ)) 6 1. By assumption, t(ζ)
is positive. Therefore, maxn,sn,s0n [Gn(s

0
n,σ−n(ζ))−Gn(sn,σ−n(ζ))] is also a positive analytic function and,

being greater than c−1(t(ζ))p, has order at most o(t(ζ))p.

Using Lemma 4.2, express each τn(t) as the sum
PKn

k=0 f
k
n(t)τ

k
n , where each τ

k
n is a mixed strategy in Σn

and fkn : [0, t̄] → R+ is analytic. Construct the game Γ in extensive form in which each player n chooses

among the following, while remaining uninformed of the others’ choices. Player n first chooses whether to

commit to the mixed strategy τ0n or not; if not then n chooses between τ
1
n or not, and so on for k = 2, . . . ,Kn;

and if n does not commit to any strategy τkn then n chooses among the pure strategies in Sn. Since the

normal form of Γ is an inflation of G, Weak Invariance implies that for the game Γ the solution selects

a subset of those strategies equivalent to Σ◦. For perturbations of the game Γ use the following action
perturbation: for the information set where n chooses between τkn or not, use ε

k
n(t) = ε̄kn(t) = λn(t)f

k
n(t);

and at the information set where n chooses among the strategies in Sn, use ε
Kn+1
n (t) = ε̄Kn+1

n (t) = tp+1.

Let S̃ and Σ̃ be the sets of pure and mixed-strategy profiles in Γ. (As in the two-person case, for each

player n and each 0 6 k 6 Kn we identify all strategies of n that choose, at the relevant information set, to

play the strategy τkn .) Let E be the set of (t,σ) ∈ (0, t̄]× Σ̃ such that σ is an ε(t)-quasi-perfect equilibrium
of Γ (i.e., satisfying conditions 1 and 2 of Definition 2.2) whose reduced-form strategy profile in Σ lies in
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X. Since the minimum error probabilities are analytic functions of t, E is a semi-analytic set.4 Strong

Backward Induction requires that there exists σ̃0 ∈ Σ∗ such that the reduced form of σ̃0 belongs to Σ0 and

(0, σ̃0) belongs to the closure of E. By the Curve Selection Lemma (cf. Lojasiewicz, 1993, II.3), there exists

an analytic function ζ 7→ (t(ζ), σ̃(ζ)) from [0, ζ̄] to [0, t̄] × Σ̃ such that (t(ζ), σ̃(ζ)) ∈ E for all ζ > 0 and

(t(0), σ̃(0)) = (0, σ̃0). By construction, t(ζ) is nonconstant, i.e., 0 < o(t(ζ)) <∞.
From σ̃(ζ) construct the analytic function σ̂(ζ) as follows: for each player n, choose a strategy s∗n in Γ such

that o(σ̃n,s∗n) is zero–i.e., a strategy in the support of σ̃n(0). Let S
0
n be the set of all pure strategies sn of

the original game G that are chosen with the minimum probability in σ̃(t) (i.e., with probability (t(ζ))
p+1
);

let σ̂n,sn(ζ) = 0 for each sn ∈ S0n; define σ̂n,s∗n(ζ) = σ̃n,s∗n(ζ)+ |S0n|(t(ζ))p+1; and finally, let the probabilities
of the other strategies in σ̂ be the same as in σ̃. Obviously, o(σ̃ − σ̂) > o(t(ζ))(p+ 1) > o(t(ζ))p, where the
second inequality follows from the fact that 0 < o((tζ)) <∞.
If σ̂n,sn(ζ) > 0 for some sn ∈ Sn then sn is a best reply against σ̃(ζ); hence by Lemma 4.1, sn is a best

reply of order o(t(ζ))p against σ̂(ζ). Likewise, for each k the strategy sn that plays τ
k
n at the appropriate

information set is optimal of order o(t(ζ))p against σ̂n(ζ) if σ̂n,sn(ζ) > λn(t(ζ))f
k
n(t(ζ)).

Let σ(ζ) be the reduced form of σ̂(ζ) in the game G. Then we have a well-defined analytic function

ϕ : [0, ζ̄] → Y , given by ϕ(ζ) = (t(ζ),σ(ζ)): indeed, by definition, σ(ζ) is contained in X; also, for each n

and sn ∈ Sn, σn,sn(ζ) > λn(t(ζ))τn,sn(t(ζ)), since in σ̃(ζ) (and therefore in σ̂(ζ)) the “pure” strategy τ
k
n is

chosen with probability at least λn(t(ζ))f
k
n(t(ζ)). Therefore, by the above Claim, there exist n, sn such that

σn(ζ) assigns sn more than the minimum probability even though it is not a best reply of order o(t(ζ))p

against σn(ζ) (and σ̂(ζ)). By the definition of σ(ζ) and σ̂(ζ), either (i) sn is assigned a positive probability by

σ̂(ζ) or (ii) a strategy τkn–containing sn in its support, when viewed as a mixed strategy in Σn–is assigned

a probability greater than λn(τ(ζ))f
k
n(t(ζ)), even though it is not a best reply of order o(t(ζ))p against σ̂(ζ),

which contradicts the conclusion of the previous paragraph. In the game Γ, therefore, for any sequence of

sufficiently small t there cannot be a sequence of {ε(t)}-quasi-perfect profiles whose reduced forms are in X.
Thus Strong Backward Induction is violated.

5. Concluding Remarks

We accept the arguments for invariance, and by implication Weak Invariance, adduced by KM as entirely

convincing–to do otherwise would reject a cornerstone of decision theory. Our results differ from KM

primarily in using quasi-perfection to specify a strong form of backward induction. In spite of its awkward

name, quasi-perfection seems to be an appropriate refinement of weaker forms of backward induction such

as sequential equilibrium. Some strengthening is evidently necessary since a sequential equilibrium can use

inadmissible strategies and strategies that are dominated in the continuation from an information set, and

compared to perfection, quasi-perfection avoids pathologies from a player’s anticipation of his own trembles

at subsequent information sets. However, one might conjecture that similar conclusions could be derived from

a formulation in which Strong Backward Induction requires only that a selected set include for each extensive

form an equilibrium of the agent-normal form that excludes inadmissible strategies and that evaluates each

agent’s conditional payoff at its information set as the player’s continuation payoff. Alternatively, the reader

may have noticed that Strong Backward Induction is used in the proofs mainly to establish existence of

4A ⊆ Rk is semi-analytic if for all x ∈ Rk, there exists a neighborhood U of x, such that A ∩ U is a finite union of sets of
the form {y ∈ U | f1(y) = · · · = fm(y) = 0, g1(y) > 0, . . . , gl(y) > 0} where f1, . . . fm, g1, . . . , gl are analytic on U .
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lexicographic probability systems that “respect preferences” as defined by Blume, Brandenberger, and Dekel

(1991). Thus Axiom 2.3 might state directly that each sequence of perturbations of an extensive form should

refine the selected set by selecting a lexicographic equilibrium that respects preferences, as in statement

3 of Theorem 3.1 and Corollary 3.2 for two-player games. It seems plausible that quasi-perfection can be

characterized in terms of a lexicographic equilibrium with the requisite properties.

Theorems 3.3 and 4.3 remain true if Axiom 2.3 is replaced by the requirement that a selected set must

include, for each information set h of each player, an equilibrium that provides a quasi-proper continuation

from h. That is, it is the limit of ε-quasi-proper equilibria for which conditions 1 and 2 of Definition 2.2 are

replaced by the requirement that if the expected continuation payoff from h for a ∈ An(h) is less than it is
for a0 then ε|An(h)|

h 6 σεn(a|h) < εhσ
ε
n(a

0|h). In Govindan and Wilson (2002) we establish for a generic class
of sender-receiver signaling games an analog of Theorem 3.3, but rather than Axiom 2.3 we assume that the

selected set contains an equilibrium that is quasi-proper in continuation from each information set of the

receiver. Actually, for generic signaling, outside-option, and perfect information games it suffices to replace

Axiom 2.3 by the requirement that a selected set contains a proper equilibrium.

In a companion paper (Govindan and Wilson, 2004) we show that the axioms invoked here imply a

version of Hillas’ (1996) conjecture that invariance and backward induction imply forward induction; that

is, a selection is not affected by deleting a strategy that is inferior at every equilibrium in the selected set.

This is also the gist of the “intuitive criterion” proposed by Cho and Kreps (1987) for signaling games, and

its extension to the solution concept of “divinity” proposed by Banks and Sobel (1987).
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